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Definition: High-End Computing (HEC)

Compute-Intensive

Difficult Easy

Tightly-coupled
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nodes in lock-step
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independent task / 

node

Fast / low-
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memory and 
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memory and

storage
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Data-Intensive

Difficult Easy
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of accelerators

Few                         
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10s to 1000s           

of information 

feeds

Few                            

information       

feeds

Large graphs Small graphs

Large data 

sets

Small data sets

High 

Performance

Data Analysis

Basic 

Data Analysis

High-End 

Computing 

(HEC)
=

High Performance 

Computing        

(HPC)
+

High Performance 

Data Analysis 

(HPDA)

Data-Intensive Methods: a computer 

science approach to understanding 

phenomena and exploiting uncovered 

information

 Building artificial intelligence (AI) models 

(machine and deep learning)

 Uncovering relationships (graph analysis)

 Understanding large volumes of data (“big 

data” analysis)

Machine 

and Deep 

Learning

Graph 

Analysis

Big-Data 

Analysis
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Definition: Digital Engineering vs. MBSE
 Model-based systems engineering (MBSE) – a formalized methodology used to support the 

requirements, design, analysis, verification, and validation associated with the development of 

complex systems (Nataliya Shevchenko, “An Introduction to Model-Based Systems Engineering 

(MBSE),” Software Engineering Institute (SEI), 21 Dec 2020)

 Digital engineering (DE) – an integrated digital approach that uses authoritative sources of 

systems' data and models as a continuum across disciplines to support life cycle activities 

from concept through disposal. (Defense Acquisition University)

– Integrated digital approach → a monolithic solution that suggests there can be no R&E / A&S divide

– Data → must be regularly managed/updated/curated at each stage of the process

– Models → both compute and data-intensive; range from basic analysis to high-end computing (HEC)

– Availability → accessible to anyone in the design, test, evaluation, sustainment, mission planning 

pipeline

– Duration → from concept through disposal (and possibly beyond); decades to centuries

– Extensity → continuum across disciplines; simultaneous accounting of all assets at all lifecycle stages to 

facilitate projection of current and future forces in a full range of scenarios, to determine gaps, to advise 

the characteristics of future platforms, and to build preventive maintenance plans for individual assets
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Current Simulation Capability/Increasing Resources

HEC Impacting Digital Engineering

Increasing Program Relevance and Impact on Program Cost, Schedule, and Performance

HEC and High Fidelity 

Physics  (Physics 

Based Analytics-PBA) 

used for Deficiency 

Diagnosis

• Single Point Calc’s

(days/100k CPUHrs)

• Typically Occurs 

After Wind/Flight 

Test discoveries

• Fixes can be very 

costly since the 

vehicle is far into 

the design timeline

• Payoff for Programs 

($M’s)

• Postdictive/Early 

Predictive

C-130H Tail Crack

Light Weight Prec Munition

B-2/KC-135 Refuel
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Current Simulation Capability/Increasing Resources

HEC Impacting Digital Engineering

Increasing Program Relevance and Impact on Program Cost, Schedule, and Performance
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• Many More Single 

Point Calcs/ 
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Revolutionary Approach to Building Accurate ModelsCurrent Simulation Capability/Increasing Resources

HEC Impacting Digital Engineering

Increasing Program Relevance and Impact on Program Cost, Schedule, and Performance
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Revolutionary Approach to Building Accurate ModelsCurrent Simulation Capability/Increasing Resources
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Increasing Program Relevance and Impact on Program Cost, Schedule, and Performance
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System Level Models 
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Physics Based Digital Engineering

 Combat Air Vehicle Example

 Look at example Apps, Physics Informed 

Surrogates, Physics Based Analytics, Data Driven 

Analytics, and Data Acquisition and Curation  
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 Models are built to impact decision making in air vehicle design, 

development, and sustainment

– Examples – Aerodynamics, Stability and Control (S&C), Propulsion, Structures

 High Fidelity CFD Models typically…

– Take supercomputer resources to run depending on the fidelity of the mesh

– Take flight conditions, surface and external volume meshes with boundary condition attributions 

as inputs

– Compute the surface and volume aerodynamics of the vehicle using a finite volume or finite 

element solution algorithm

– May be coupled with a structural solver, propulsion module, 6DOF solver, chemistry solvers for 

non-ideal gases, and conjugate gradient heat transfer solver to compute multiphysics simulations

 Reduced Order Loads Models typically…

– Are derived from simulations using the high fidelity CFD solver, sometimes coupled with other 

physics models (e.g. S&C 6DOF, Structures, Propulsion)

– Run faster than real time and can span the air vehicle envelope

Physics Based Analytics - Aerodynamics
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 The Stability and Control Model is typically a 6 Degree of Freedom (6DOF) 

solver that…

– Runs faster than real time and spans the vehicle envelope

– Takes mass properties, vehicle configuration, and desired flight trajectory (e.g. stick inputs) or 

conditions as inputs

– Uses information about vehicle aerodynamics, structures, and propulsion and the equations of 

motion to determine a vehicle’s trajectory

– Can incorporate “feedback control laws”

– Can easily be improved for accuracy by replacing aerodynamics, structures, and propulsion data 

as higher fidelity information is known

 Stability and Control Model can be used for…

– Stability and Control analysis and handling qualities                         evaluations

– Sensitivity studies

– Mission performance – fuel burn, available payload weight, etc.

– Driver for “Pilot in the Loop” Simulators

Physics Based Analytics – S&C
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 The Propulsion Model has two variants

– High fidelity turbomachinery integrated into a CFD solver

– Engine cycle deck

 Turbomachinery are geometry/mesh components (e.g. compressor or 

turbine rotor/stators, combustor) in the flowfield path of a high fidelity 

simulation tool

 The Engine Cycle Deck typically…

– Runs faster than real time and spans the vehicle envelope

– Takes flight conditions, compressor face conditions, exit nozzle conditions, and vehicle configuration 

as inputs

– Uses information about the engine and with one-dimensional engine pressure and temperature ratios 

through the engine stations, along with bleed losses and installation losses, determines compressor 

face and exit nozzle mass flow, velocity, and temperature data, as well as fuel burn and installed 

thrust

– Can be run offline, integrated into a high fidelity simulation tool (FORTRAN or NPSS Model) with 

pseudo-time accuracy with or without transient behavior, or integrated into an S&C 6DOF Model to 

provide thrust

Physics Based Analytics - Propulsion
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 Two variants of Structures Models 

– Finite Element Structural Model with a High Fidelity Simulation Tool

– Modal Structural Model

 The Finite Element Structures Model typically…

– Takes from work station to supercomputer resources to run depending on the fidelity of the mesh

– Takes flight conditions, internal structure meshes with material property attributions, and external 

loads as inputs

– Computes the structural deformation, as well as, internal stress and strain of the structure using a 

finite element solution algorithm

– It may be coupled with an aerodynamic solver and/or a conjugate gradient heat transfer solver to 

compute fluid-structure, thermal-structure, or fluid-thermal-structural interactions

 The Modal Structural Model typically…

– Is a linearized Reduced Order Model derived from the Finite Element Model through an 

eigenvalue analysis

– Runs orders of magnitudes faster than the Finite Element Model

Physics Based Analytics - Structures
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Physics Based Analytics

 During the design process we can eliminate poor design choices by 

increasing the fidelity of the PBAs as more information is known (objects 

and connection notional)
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Physics Based Analytics
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Physics Based Analytics
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Physics Based Analytics

 During the design process we can eliminate poor design choices by 
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Physics Based Analytics
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Physics Based Analytics
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Physics Based Analytics

 During the design process we can eliminate poor design choices by 

increasing the fidelity of the PBAs as more information is known (objects 

and connection notional)

Outer Mold 

Line OML

Inlet/Exit 

Geometry
Control 

Surfaces

Cycle Deck 

Engine 

Model

Rotating 

Machinery 

Engine Parts

6DOF Flight 

Simulator

Closed Loop 

Automated Flight 

Control System

Preliminary 

Structural 

Model

Finite Element 

Structural Model

In
c

re
a
s
in

g
 D

e
ta

il
/A

c
c
u

ra
c
y

In
c
re

a
s
in

g
 M

u
lt

i-
d

is
c

ip
li

n
a
ry



Page-23
Distribution Statement A: Approved for public release, distribution unlimited.

Physics Based Analytics

 During the design process we can eliminate poor design choices by 

increasing the fidelity of the PBAs as more information is known (objects 
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Reduced-Order Modeling
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Example of Developing an Authoritative Digital 

Surrogate Reduced Order Model for Aerodynamics

Edward M. Kraft, “Development and Application of a Digital Thread / Digital Twin Aerodynamic Performance 
Authoritative Truth Source,” AIAA-2018-4003. Aviation Systems Conference, Atlanta, GA, June 25-29, 2018

𝒇(𝒙, θ)

Experiments /
Tests

Test

Additional Data 
from
• Models
• Tests
• Operations
• Digital Twins
• AI Cognitive 

Learning

Increasing
•Geometric Fidelity
•Physics Fidelity
•Surrogate Credibility
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Enhanced Surrogates through Data Driven Analytics

 Surrogates shown up to this point have been 

based on PBA
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Enhanced Surrogates through Data Driven Analytics

 Surrogates shown up to this point have been 

based on PBA

 There is also a wealth of information available 

(E.g. Ground test data, flight test data, fleet 

maintenance data)
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 Surrogates shown up to this point have been 

based on PBA

 There is also a wealth of information available 

(E.g. Ground test data, flight test data, fleet 

maintenance data)

 Data can be curated/analyzed for use in 

surrogate generation

Enhanced Surrogates through Data Driven Analytics
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 Machine Learning/Deep Learning (ML/DL) can be used to create surrogates 

(requires a significant amount of data)

Enhanced Surrogates through Data Driven Analytics

 Surrogates shown up to this point have been 

based on PBA

 There is also a wealth of information available 

(E.g. Ground test data, flight test data, fleet 

maintenance data)

 Data can be curated/analyzed for use in 

surrogate generation
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 Machine Learning/Deep Learning (ML/DL) can be used to create surrogates 

(requires a significant amount of data)

 The most powerful surrogates are “constrained” by the physics to create a 

combined DDA/PBA surrogate that accounts for the un-modeled physics/tail 

number specifics

Enhanced Surrogates through Data Driven Analytics

 Surrogates shown up to this point have been 

based on PBA

 There is also a wealth of information available 

(E.g. Ground test data, flight test data, fleet 

maintenance data)

 Data can be curated/analyzed for use in 

surrogate generation
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 Machine Learning/Deep Learning (ML/DL) can be used to create surrogates 

(requires a significant amount of data)

 The most powerful surrogates are “constrained” by the physics to create a 

combined DDA/PBA surrogate that accounts for the un-modeled physics/tail 

number specifics

 Decision Support Apps can be built on this foundation of DDA/PBA – Mission 

Analysis, Structural Failure Analysis, etc.

Enhanced Surrogates through Data Driven Analytics

 Surrogates shown up to this point have been 

based on PBA

 There is also a wealth of information available 

(E.g. Ground test data, flight test data, fleet 

maintenance data)

 Data can be curated/analyzed for use in 

surrogate generation
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 The Physics Based Digital Engineering (PBDE) vision, such as described here, is the 

inevitable progression of technology (viz., high performance computing, physics, 

data analytics, and software engineering)

 The union of Machine Learning and Digital Surrogate Training via Physics-Based 

virtual test is what will deliver decision support data at the speed of relevance

 Machine Learning and Physics-Based virtual test both require HPC resources that can 

be reliably delivered by the HPC Modernization Program

 This PBDE vision can be applied to next generation combat air vehicle development 

through its Life-Cycle and specific examples have been shown

 Decision Support App software based on physics and system data can be pushed UP

the leadership chain to aid in fast, accurate, decision making with high impact

Concluding Remarks and Discussion
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Questions?


