APOGEE

RESEARCH
STITCHES
SoS Technology Integration Tool Chain for
Heterogeneous Electronic Systems
Dr. Evan Fortunato
5”7%5%:@”“ gd lO] S

This Research was developed with funding from the Defense Advanced Research Projects Agency (DARPA)

The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the
official views or policies of the Department of Defense or the U.S. Government

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

The Goal: Composing Systems That =
Keep Up With The Times RESEAREH

* DoD has long assumed that homogeneous, fixed-configuration weapon systems
are the only way to meet their goals of a superior military force
— Must last a long time, so requirements are developed for 30+ years out.
— Meeting 30 year out requirements with today’s technology is hard
— Result is the best design possible with 20-30 year old technology and
updates are not efficient with respect to time or cost...
* Open Architectures Try to Solve this Problem
— Requires enormous effort to reach a “global” consensus on the system architecture,
* Even then, it is only a “local” version of “global”
* Global standards have to work for everyone, so aren’t optimized for your application

— Result is heterogeneous components in a homogeneous architecture — which doesn’t
work because the architecture needs to evolve with the technology

— Attempts to build flexibility into the architecture (to support heterogeneity) just result
in overly complex infrastructures that still don’t anticipate the new technologies

 What if Global Interoperability Didn’t Require a Common Interface at ALL?

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Understanding the Trade between Local and
Global Message Standards...

APOGEE
RESEARCH

* Local Message Standards

— Flexible —You Can Add New
Messages Easily

= Message #

Transform M2 <- M1:

— Inefficient - Require N2 Transforms M2 =T21(M1)
(all pairs) for Interoperability Transform M5 <- M1:
M5 = T51(M1)
* Global Open Standards
— Efficient — N Transforms to/from @ Transform M2 <- M1:
the Global Standard @ @ M2 =T2G(TG1(M1))
— Not Flexible — Can’t change Transform M5 <- M1:
without tremendous effort @ @ M5 = T5G(TG1(M1))
* Incremental Standards (STITCHES) @ Transform M2 <. M1
— Efficient —~N Transforms for @ @ M2 = T21(M1))
Interoperability Transform M5 <- M1:
— Flexible — You Can Add New @ @ M5 = T54(T43(T32(T21(M1))))
Messages Easily

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Key Innovation: APOGES
Field and Transform Graph (FTG) mESEARER

* Fields are Nodes in the Graph and Contain:
— A set of subfields (which are defined by other nodes in the graph)
— A set of properties (mathematically precise specification of node properties)
— Note: All node information is defined locally, no coordination required!

* Nodes are Connected by Links That Define the Transform from
Source to Destination Nodes

— Each link requires a pair wise human coordination between the
source and destination

— Transforms Expressed in a Domain Specific Language Built for this Purpose
— Graph algorithms determine a composition of transforms (path through
the FTG) that produce the destination message given a source message
* No Global Coordination Required to Update or Evolve Data in

the FTG

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

STITCHES Uses a Domain Specific Language
to Capture the Specification

APOGEE
RESEARCH

* Why a Domain Specific Language (DSL)?
— General Purpose Languages are Hard to Read, Write and Formally Analyze
— Standard System Engineering Tools Are Limited
— DSL Provides a Narrow Language That is Tailored To This Problem
* Assign is the Key STITCHES Capability to Allow Efficient Use of the FTG
— Assign designates that two instances represent the same thing in the real world
— STITCHES then finds a path through the FTG to convert between the fields
— Result is that even if the messages don’t match, many of their subfields will

Sensor Output Message: Sensor.Out Tracker Input Message: Tracker.In
Time:Sensor.Time | DwellTime:Tracker.Time
Dets:Sensor.Detection[] XForm | Contacts: Tracker.Detection[]

XForm(in:Sensor.Out):Tracker.In { XForm(in:Sensor.Out):Tracker.In {

DwellTime = Assign(In.Time); DwellTime = In.Time-18;

Contacts = Assign(in.Dets); Resolve Contacts = in.Dets*180/3.14159;

}

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

What Does STITCHES Produce?

APOGEE
RESEARCH

Subsystem Core

Developed by Subsystem Engineers

Subsystem Interface, Developed by SS Engineer with STITCHES Autogenerated
Libraries. Developed once per Core Version to Work for all SoS Configurations

Autogenerated by STITCHES; Tailored to Each SS and SoS Configuration

Interface
Generated
Glue Code
Platform 1
Radar Tracker Comms |
Core Core Box
Interface Interface Interface
Shim Shim Shim Shim
Transform EM Transform EM
Serialize Deserialize|| Serialize Deserialize
MAC MAC MAC MAC
Transport | | Transport | Transport | | Transport

A

A

Local Bus Network 1

—_———

Platform 2
Comms Display
Box Core
Interface Interface
Shim Shim
Serialize EM
MAC Deserialize
Transport MAC
Transport
Local Bus Network 2

MAC: Message Authentication Code
EM: Execution Monitor

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

STITCHES is Focused on Implementing a Scalable

Result: High Performance Interfaces Optimized For Each Application

1 . APDSEE
_Approach to Building SoS Capabilities ESEAREH
* Design Space Exploration SoS Specification] ~
— Process FTG to Construct T Community Specifications
Transformation Chains :
_ . Automated Design Field & Transform Graph
— Specify Interface Stack by forming Space Exploration
& solving optimization problems P P Subsystem Specs
* Compiler 308 _ (Distributed) -/
— Construct Interface Stack Structure . .
Configurations
— Optimize Transforms for this
Instance of the Interface :
. - : Compile)
Provide Cyber Security through < Base Subsystems
whitelist property enforcement Interfaces
— Generate C++/Java Code & :r Instantiated
Compile into binaries | Subsystems
STITCHES

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Evolution of the Architecture: .
Backwards Compatibility RESEARER

We Started with a Sensor_Out and a Tracker_In Message

Sensor.Out » Tracker.In

Time:Sensor.Time
Dets:Sensor.Detection[]

DwellTime:Tracker.Time
Contacts:Tracker.Detection[]

A 4 v

Next Add a Sensor_Out_With_Sig and connect it to the Sensor_Out

Sensor.Out_With_Sig > Sensor Output Message: Sensor.Qut

Time:Sensor.Time
SigDets:Sensor.SigDet[]

Time:Sensor.Time
Dets:Sensor.Detection[]

v

\ 4

Sensor.SigDet » Sensor.Detection

Lat:Sensor.Lat
Lon:Sensor.Lon
Sig:Sensor.Sig

Lat:Sensor.Lat
Lon:Sensor.Lon

v

\ 4

New Sensor with Signatures Can Now Interoperate with the Tracker
But Tracker Doesn’t Use the Signature Information

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Evolution of the Architecture:

Forwards Compatibility

APOGEE
RESEARCH

* Now Let’s Add in an Upgraded Tracker (that can use the Signatures)

Sensor.Out_With_Sig

> Tracker.In_With_Sig

Time:Sensor.Time

\ 4

DwellTime:Tracker.Time

SigDets:Sensor.SigDet[]

\ 4

Contacts: Tracker.SigDet []

Sensor.SigDet

Lat:Sensor.Lat

> Tracker.SigDet

Lon:Sensor.Lon

Lat:Tracker.Lat

Lon:Tracker.Lon

Sig:Sensor.Sig

v \ 4 v

Sig:Tracker.Sig

New Tracker Can Now Use the Full Data from the New Sensor (Including Signatures)

Updated FTG Supports the Old, New and Mixed Architectures

Sensor.Out

A

v

Tracker.ln

Sensor.Out_With_Sig

\4

Tracker.In_With_Sig

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Handling Packed Representations @ES{'%H

* Many real systems mix their interface definition with their implementation

— Result is a serialized (Packed) form of the interface that can represent multiple different
interface messages (e.g., STANAG 4607) with descriptor words for run time resolution

— Packed messages are often used for run-time efficiency - they tend to be the big / high
rate messages in the system. So don’t want to unpack if not necessary

* Mirrored Unpacked Nodes Provide an Effective and Efficiency Solution
— Create a Second Unpacked Node that Contains a Structured Version of the Interface
— Create Transforms between the Unpacked and Packed Nodes
— Interact with other Interfaces via their Unpacked Representations
— Auto-generate the Desired (high performance) Packed-to-Packed Transforms

Auto-generated
[Packed Msgl <—><—>[Packed Msg2]
- Transform Chain -

A 4 A 4

[Unpacked Msgl } { Unpacked Msg2]

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Optimized Performance:

APOGEE

[Packed - Unpacked - Unpacked - Packed] vs. [Packed - Packed] RESEARCH
PUUP | Java Implementation | C++Implementation
vs PP Speed Latency Speed Latency

Connection Mbps ms Mbps ms
R1->T1 (No Transform) PUUP 2956 1.1 2818 0.7
R1->T1 (No Transform) PP 2956 1.1 2818 0.7
R1->T2 (Only Change Time) PUUP 2783 1.2 2803 0.8
R1->T2 (Only Change Time) PP 2783 1.2 2743 0.8
R1 -> T3 (Switch Order Lat, Lon) | PUUP 1789 1.4 1773 0.9
R1 -> T3 (Switch Order Lat, Lon) PP 1804 1.4 1747 0.9
R1 -> T4 (Change All Fields) PUUP 1245 1.6 1555 0.9
R1 -> T4 (Change All Fields) PP 1228 1.6 1643 1.0

MAC and Execution Monitors are Disabled for these Performance Runs

All interactions via localhost, so no network latencies are involved
Data Gathered on a Standard (~4 Year Old) Quad Core Workstation

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Interoperability via Legacy Comms,
What if desired messages aren’t supported? RESEARGH

APOGEE

Pod Tracks

}

?

l

Legacy Comm Message

Display Tracks
1

?

|

Legacy Comm Message

Legacy Comm Message

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited) 12

Auto-generate Transcoder to “Encode”
Messages into Legacy Comms Messages

APOGEE

RESEARCH

Pod Tracks
v
Serialize

\ 4

y

A 4

Legacy Msg (600 Bits)

Display Tracks
f

Transform
f

A 4

Transcoder Generator

¥

2 Minutes
on Laptop

Pod Tracks
1
Deserialize

Transcode |
3

Transcoder

1

Legacy Comm Messages

Free Bits (503)

Fixed Bits (97)

» Transcode
*

Legacy Comm Messages

n
>

Manually Defined

Automatically Created

Capability Demonstrated in Live Flight in January 2018 with Example Legacy Comm’s System

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited) 13

STITCHES Allows a New Approach P
to System Integration RESEARSH

* FTG Efficiently Captures Information Required for Interoperability
— No Global Coordination, Just local and Pairwise Interactions
— Ontology defined via transformation, not semantics
e STITCHES Allows for the Rapid Instantiation of SoS Capabilities
— Compile new SoS integrations in minutes, not months
— Each instance is tailored (optimized) for the needs of that SoS
e STITCHES Is Available to Anyone in DoD As Open Source Toolchain
— Register for account (with a DoD Gov/contractor email) at www.stitches.tech

— Full source, install packages, training packages, pre-built VM, user forums, etc.

— Targeting Public, Open Source Release of STITCHES (not FTG which contains DoD Data)
e STITCHES Is Very Mature for a DARPA Project

— Dozen Major Releases with large user base.

— Training sessions since 2015 (300+ people)

— Used at 8+ major events, including multiple flight events

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

http://www.stitches.tech/

