

Engineered Resilient Systems

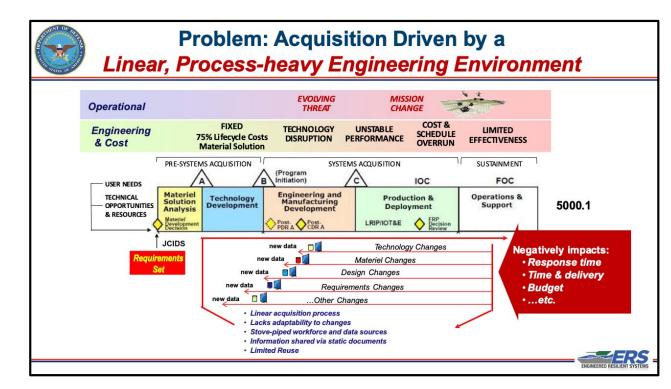
Power of Advanced Modeling and Analytics in Support of Acquisition

Computational Engineering Ecosystem October 2019

Rob Wallace, PhD, PE Information Technology Laboratory, Director US Army Engineer Research and Development Center

Engineered Resilient Systems LOE (FY16-FY25)

ERS Mission


- Transform Acquisition Engineering
 - Move engineering rigor to the left
 - Reduce risk through improved simulation
 - Instantiate digital engineering process
 - Increase M&S productivity by 10,000x
- Tri-Service and Industry Collaboration
 - Facilitate impactful demonstrations
 - Share lessons learned

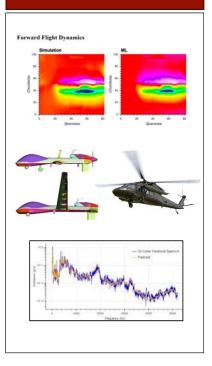
Products Delivered

- Computational models and process tools (Galaxy)
- Conceptual design tools (air, land, sea)
- High performance data analytic infrastructure
- Decision dashboards & visualization tools
- Models for mission effectiveness.

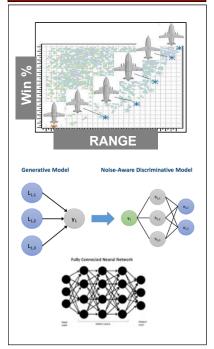
Lessons Learned

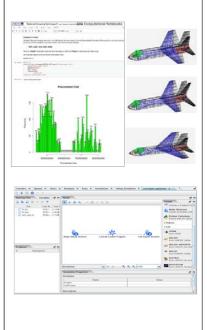
- Advanced computing (models, data, and analyses) is required for rigorous systems analysis
- Computational environments that easily adapt to unique processes, models and tools for each acquisition domain is a must
- Government/industry collaboration is crucial for success

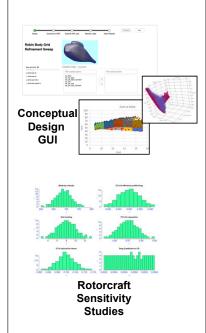
Late discovery of design or requirements changes drive up cost and extend schedules.



ERS Capabilities


Computational Processes Speed and Accuracy


Computational Environments Shared Tools & Data


Decision Analytics Deep Insights

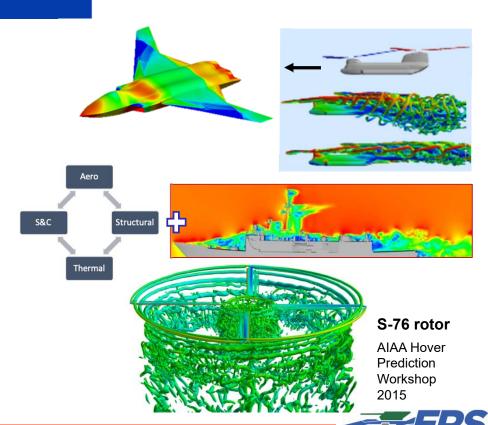
Set-Based Design Risk Reduction & Resilience

Decision Dashboards Decide Faster

Computational Processes

Speed and Accuracy

Key Projects


- AFRL / Lockheed Hypersonics
- AFRL Directed Energy
- Army Future Vertical Lift

Required Capabilities

- Fast and accurate models six months to six days to six seconds
- Model accessibility production grade
- Multi-physics, tightly or loosely coupled
- Temporal and spatial domain scalability 7 orders magnitude
- Portability to multiple computing environments
- Ubiquitous usage

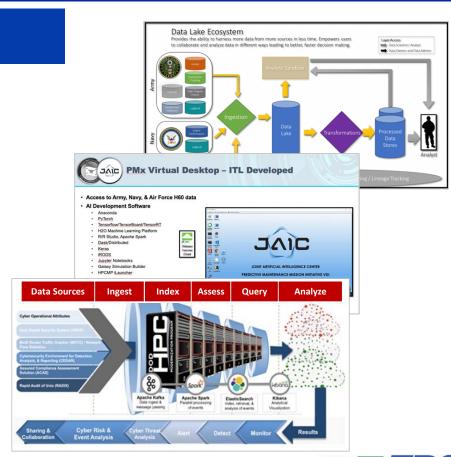
Challenges

- Solution times
- Surrogate model training data requirements
- End-to-end, fully coupled, model execution

Computational Environments

Shared Tools & Data

Key Projects


- Hypersonics AFRL / Lockheed Computational Environment
- AI/ML JAIC PMx NMI, JAIC JCF
- Future Vertical Lift

Required Capabilities

- Common AI/ML development software
- Common access to data / models by all partners
- Must leverage DOD HPCMP and Cloud (JEDI when ready)
- Portability to future computing platforms

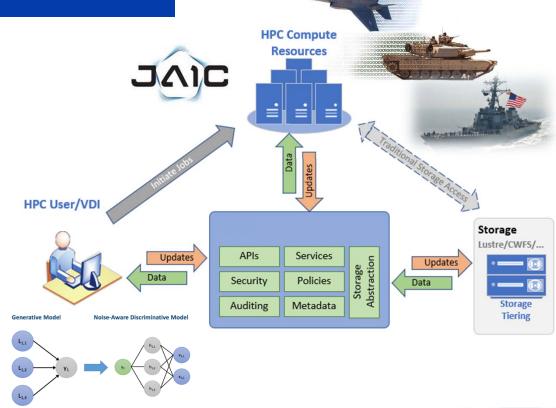
Challenges

- Continuous funding
- Computational environments are still in development
- Cultural acceptance
- Gov/OEM should utilize same tools

Decision Analytics

Deep Insights

Key Projects


- Predictive maintenance: (PMx) NMI, UH-60 Black Hawk
- Cyber analytics
- Automated labeling of data

Required Capabilities

- Co-location of data and analytic tools
- Advanced data wrangling
- Automated tuning of AI/ML algorithms
- Computing learning at the edge
- Physics-informed machine learning

Challenges

- Tera-, peta-, exabyte data lakes
- Mixed classification of data
- Dirty data

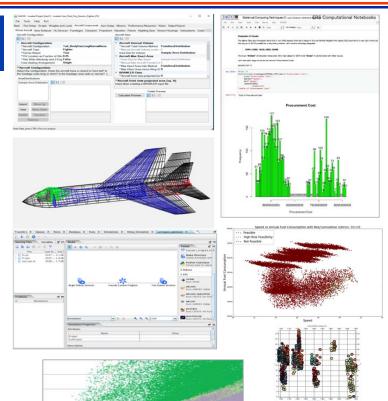
Set-Based Design

Cluster

analysis - GV

Risk Reduction & Resilience

Key Projects (25+ current projects)


- High-powered microwave effectiveness models (AFSIM)
- Space-based power, IADS, and LEO satellite studies in AFSIM
- DARPA HAVOC, DARPA INVEST programs
- High-energy laser parameter tuning in AFSIM
- Army Future Vertical Lift conceptual design and assessment
- Hall Effect thruster parameter tuning

Required Capabilities

- Scalability must execute and analyze 10^N simulations
- Must include legacy tools
- Machine-driven design
- Multi-fidelity model coupling

Challenges

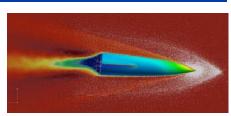
- Properly sized sets for accurate tradespace exploration
- Cost modeling
- Accurate physics

Displacement

Decision Dashboards

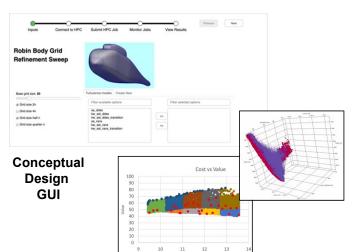
Decide Faster

Key Projects


- Trades on ships, AV, missions
- Logbook data (helicopters)
- Environmental factors

Required Capabilities

- Ease of use
- Faster execution
- Portability
- Adaptability


Challenges

- Portability to environments (classification)
- Disconnected workflows
- Spotty network connectivity
- Unique stakeholder processes
- Mission engineering integration

Scientific Visualizations

Maintenance Dashboards

Rotorcraft Sensitivity Studies

ERS Partners and Collaborators

Coalition Partners

Summary

- The ERS program addresses specific needs as outlined within the 2018 National Defense Strategy.
- ERS is focused on critical OSD priorities (e.g. Al/ML, Hypersonics, Directed Energy).
- Industry interactions are critical in support of priority DoD projects.
- ERS capabilities are adaptable to support the DoD mission engineering process using computational environments, mission modeling software, and advanced visualization.
- ERS ensures ability of services, industry, and coalition partners to fully implement digital engineering strategy.

