

EXPEDITE: MEETING THE ENGINEERING CHALLENGES OF HYPERSONIC DESIGN

Prepared by Dr. Ian Dettwiller Engineered Resilient Systems, ERDC-ITL

UNCLASSIFIED

23 October 2019

DISTRIBUTION A

US Army Corps of Engineers

DISCOVER | DEVELOP | DELIVER

OUTLINE

- Team Overview
- Problem Introduction
- Aero Domain
- Thermal Domain
- Structures Domain
- Orchestration Domain
- Summary
- Collaborative Reach

US Army Corps of Engineers • Engineer Research and Development Center

LOCKHEED MARTIN

D

TEAM OVERVIEW

Leverage a large, diverse team.

- Expertise in:
 - Applied Mathematics
 - Physics
 - Mechanical/Aerospace engineering
 - Computer Science

Prior Work

- Aerostructural Defeat CCDC AvMC collaboration
 - Improved efficiency of UAV blast simulations for lethality
- ESAVE AFRL and Lockheed Martin collaboration
 - Automated workflow for supersonic vehicle design

UNCLASSIFIED

3

PROBLEM INTRODUCTION

The ability to efficiently and effectively model the coupled physics associated with hypersonic vehicles has not been sufficiently addressed

- Limits our ability to set realistic performance requirements
- Reduces the set of conceptual designs that can be considered
- Compromises our overall ability to effectively analyze designs

Key Technology Gaps

US Army Corps of Engineers • Engineer Research and Development Center

PROBLEM INTRODUCTION

Current Status

- Flight profile defined by singlediscipline CFD analyses
- Thermal-structural response only considered at critical point
- No in-the-loop stability and controls consideration

Goals

- Coupled-physics analyses
- Integrated stability and controls
- Automated workflow

US Army Corps of Engineers • Engineer Research and Development Center

AERO DOMAIN

Objective

 Validate, develop, and integrate government tools for current and future hypersonic vehicle design (HVD) workflows

Approach

- Compare government and industry tools to validate hypersonic analysis
- Develop capabilities to fill technology gaps and integrate tools within the HVD workflow

Impact

- Reduce or eliminate dependence on licensed software
- Introduce capability for S&C analysis of a hypersonic vehicle

THERMAL DOMAIN

Objective

 Establish the usability of government tools for current and future HVD workflows

Approach

- Validate government tools for thermal analysis
- Develop better physics-based models for thermal analysis
- Automate code execution

Impact

 Improved physics-capture of thermal effects Scalable solution for thermal analysis

STRUCTURES DOMAIN

Objective

 Establish the usability of government tools in current and future HVD workflows

Approach

 Validate government tools for combined thermal and aero loading

Impact

- Increased fidelity for structures analysis
- Reduced dependency on licensed software

ORCHESTRATION DOMAIN

Code Coupling

- Objective
 - Couple government toolset to facilitate data transfers and coordinate parallel execution
- Approach
 - Identify the physics needed by each discipline from each other discipline and any software gaps preventing transition of that data to other codes
 - Develop capabilities to facilitate execution of domain codes and their coordination.
- Impact
 - Drastic reduction in solution cost and time for HVD
 - Significant increase in accuracy of hypersonic vehicle analysis

SUMMARY

Objective: Quantify the coupled-physics on hypersonic vehicle design and automate the analysis process to improve efficiency.

Status

- Investigating the current hypersonic analysis capabilities of government tools
- Comparing government and industry toolsets
- Developing APIs for automated execution of software

Impact

- Reduce or eliminate dependence on licensed software
- Expand capabilities for S&C analysis of a hypersonic vehicle
- Increase fidelity for structures analysis
- Improved physics-capture for thermal effects
- Scalable solution for thermal analysis
- Drastic reduction in solution cost and time for hypersonic vehicle analysis
- Enormous advance of the state-of-the art in hypersonic vehicle analysis quality

US Army Corps of Engineers • Engineer Research and Development Center

LOCKHEED MARTIN

ENGINEERED

11

COLLABORATIVE EFFORT

Domain Expertise

- Thermal modeling
- Structural modeling
- CFD modeling ←
- S&C modeling

Tool Access

- High-fidelity analysis software
- No license restrictions +
- Software trial flexibility

HPC Access

- Allocation +
- Experience

Workflow Experience

- Automated code communication
- Improved solution efficiency

US Army Corps of Engineers • Engineer Research and Development Center

