Do We Always Want to Integrate
Tools to Create the Digital
Thread?

STEVEN H. DAM, PH.D., ESEP
OCTOBER 24, 2019

Agenda

What is the “Digital Thread?”

Why Do We Want to Integrate Tools?
How Can We Integrate Tools?

When Should We Integrate Tools?
When Should We Not Integrate Tools?

What is the “Digital Thread?”
* Defined in the DoD’s Digital

Engineering Strategy G » Q
* Objectives:
o Deliver high payoff solutions to the romtce e
warfighter at the “speed of relevance” s Modes
o Reform business practices

Source of Truth

= Digital enterprise connects people, processes, data,
and capabilities

= Improves technical, contract, and business practices
through an authoritative source of truth and digital e

and

artifacts Environments

Transform
Culture and
Workforce

From NDIA Presentation by Philomena Zimmerman. October 24, 2018

Combines model-based techniques, digital practices, and computing infrastructure

How Does Systems Engineering
“Play” in the Digital Thread?

* DoD commissioned AFRL to develop a set
of posters to explain the Digital Thread
(DT)

* The current requirements process shows
using MS Office products to create
documents manually

* The Digital process shows a model-based
approach

o We have been using tools to do this for over
30 years

o What is needed is the ability to use models in

place of documents or create living documents &

to enable model-based reviews

But this is not the whole picture

Management & Model-base'ﬁd
Systems Engineering

CURRENT REQUIREMENTS DEFINITION & MANAGEMENT

REQUIRED SYSTEM SUBSYSTEM COMPONENT REQUIREMENTS
CAPABILITIES REQUIREMENTS REQUIREMENTS REQUIREMENTS MANAGEMENT

p— Component A -1 + CONFIG.
Requirements | Pequirements CONTROL
e Camponent A E
Swtems || o S EAENTS

Capabilities System-level = c;; mmmmmm % | *ISOLATED
Sl seqrrements N | Feaurements DATABASE
LINKING

REQ'TS TO
VEV

DOCUMENTS AND

STATIC
MANUALLY GENERATED & UPDATED DOCUMENTS RELATNAHIES

i N I TR RO

DIGITAL, MODEL-BASED REQUIREMENTS DEFINITION & MANAGEMENT

DIGITAL REQUIREME&TS MANAGEMENT USING MODEL-BASED SYSTEMS ENGINEERING

SUBSYS A [ZEEEY - CONFIG. CONTROL OF
SToTEN REQ'T REQ'T DIGITAL REQUIREMENTS
Sl & ASSOCIATED MODEL

CAPABILITY SUBSYS B COMP B-2 DYNAMIC MODEL
s . REQ'T RECY . LINKING
SYSTEM Q S REQ'TS TO DESIGN TO V&V
QT2 COMP B-3
- AUTOMATED ID OF
REQ T ALL REQUIREMENTS IMPACTED BY
ANY CHANGE AT

DIGITAL REQUIREMENTS AND DYNAMIC RELATIONSHIPS ANY POINT IN THE LIFECYCLE

EXAMPLE

MODEL-BASED SYSTEM ENGINEERING FOR TRACEABILITY ANALYSIS
AIRCRAFT SYSTEM MODEL

architecture linking requirements,

ﬂﬂﬂﬂﬂ

data about system architecture

* O missing links

* Pessible aid in procurement
& source seloction

MIBSE Is Only One of Many

'D'Tﬁ

|
Digital Thread |

Posters

DT Posters T
B1

* Hierarchy shows the large number of DT
posters used to describe how models
support the entire lifecycle

* A complete SE approach should play a
significant role in orchestrating the
information developed in other models

* We clearly need to at least be able to

trace design engineering results back to
requirements to create a closed-loop
system

We need to ensure that systems engineering is part of all phases of the lifecycle

v

3
|

|
Inte'grated Digital
> aterials &
Structures
Engineering

P

3

—

| Operations & |
LPnstels

(3] D1
Digital Digital Thread for
> Configuratlon > Flagalaoemanl Part
Management Manufacturing
[c2 D2
| i > Digital
H ||3 3{1?,1‘,‘{,»"9‘,’1"‘ Maintenance Data
c3 D3
Digil:.l E:gjnelering
> Digital Quality > fechnical
Assurane Assistance
Requests
ca] D4
Digital Thread for .
> Material Review s siainment
Board Processe: Analytics
€5 D5
| Digital Thread for :
™ Manufacturing) S”ﬂ%&“‘“
| gy
Cé D6
| Digital Twin for
> Sensor Data for > Tail-number-
Digital Twins specific Predictive
Maintenance

Why Do We Want to Integrate Tools?

* Model integration is a key goal of the DES
* Tool interoperability has been a historic problem

Goal 1 ' Goal 2

Model Integration Authoritative End-to-End IP and Security Workforce Skills/
Data Solution Protection Training

i Engineer Policy/Guidance
Model Curation Practice IT Infrastructure Standards
Model Credibility Digital Artifacts Methods/Tools/
Processes

But is it model integration we need or data interoperability ?

How Can We Integrate Tools?

* The fundamental problem is the lack of a common ontology for data
interoperability
o If we don’t understand what the data elements represent, then we will likely not be
able to create an interface

o Without a common ontology, we would have to create one-to-one interfaces
between tools — this can be done, but then you have to pick a single set of tools

* The problem has been that no common ontology had been developed

o Lifecycle Modeling Language (LML) provides an open standard to address this issue
= LML already provides an ontology for both DoDAF and SysML
= |t can easily be extended to support any domain

o But as usual, very few vendors have adopted it or anything else

o Instead, a group is trying to build an ontology for SysML, but it will likely go the way
of the DoDAF Meta Model 2.0, Core Architecture Data Model, and many others
before it
= These ontologies failed because they were unnecessarily complex

The Government could adopt LML and solve this problem immediately!

Lifecycle Modeling Language (LML)

* LML was developed by a group of systems
engineers who realized that SysML was not
meeting the needs of the systems
engineering and program management
communities

* The group is led by Dr. Warren Vaneman, USN
CAPT (retired) and Professor of Practice at
the Naval Postgraduate School (NPS)

* LML is taught in over 200 Universities around
the world, including MIT, George Mason
University, Stevens Institute of Technology,
West Point, NPS, Air Force Academy

* LML is easy to learn, use, and extend

LML has proven to provide a strong ontology for systems engineering ands program management

When Should We Integrate Tools?

* Lacking a common ontology, we need to carefully select the tools we
want to integrate with

* We currently are selecting such a toolset for various projects

* But for the most part, we can rely on the export of a common format,
such as CSV or XML or ReqlF, to move data between tools; APIs can also
be used to move the data between tools

* Note that this data flows usually in one direction well, but not bi-
directionally

* But we as systems engineers we mainly want to produce specifications
for the design engineers and then take the results of the design
engineering tools and import them into our SE database

* A completely seamless integration between our SE tools and DE tools
many be a bridge too far at this time, but that should not stop us from
trying to make it work

Careful integration is critical to avoiding “garbage in, garbage out”

When Should We Not Integrate Tools?

* Physics-based simulations often apply only a portion of the physics
needed to fully represent a system and its environment
o Limited theoretical basis for the physics itself

o Approximations used due to our lack of math
o Application to areas where we don’t know the exact physics

* Physics-based simulations require extensive calibration to experimental

data to be useful
o Simulation codes use “knobs” to adjust to results to match experiments

o Users need to understand the boundary conditions where the results are valid

* Pushing poorly or non-analyzed simulations results up to the systems
level may introduce new errors

In these cases we need an “air gap” or at least an “analyst-in-the-loop”

Summary

* LML provides a path to the future of systems
engineering

* |f digital engineering is the future, then we
need to have a modern cloud-based tool that
applies NLP/ML and other technologies

* We recommend including LML in any and all
SE tools

* We cannot design future systems using old
methods and tools

* We need to embrace these new technologies,
not hamper them

We look forward to helping make “Tony Stark’s lab” a reality!

