

PTSD and a new way to fight it

By

Apurva Lanman

Principal Investigator

Ph.D. Industrial Eng., Student

Apurva.Lanman@Knights.ucf.edu

Dr. Gene Lee

Ph.D. Advisor

Associate Professor

GLee@ucf.edu

Dr. Robert Kennedy
Subject Matter Expert
Adjunct Professor
Robert.Kennedy2@ucf.edu

PTSD Research

- PTSD is severe anxiety caused due to the experience of or exposure to a traumatic situation
- People with PTSD may have depression or another type of anxiety before developing PTSD

PTSD – Undiagnosed

- Mental health stigma prevents people from getting anxiety diagnosis
- 20 soldiers commit suicide because of PTSD

Primary Gap In Research

- 200 documents/ articles reviewed
- Primary gap No continuous detection
 & monitoring of PTSD symptoms

Gaps In Research

- Five gaps across all domains
- U.S. Military has advance, inclusive, and effective PTSD resilience training compared to other domains

- 1. Real time PTSD detection and monitoring
- 2. Collective effect of diet, sleep & environment
- 3. Use of neurological measures to detect PTSD

U.S. MILITARY

- 1. Stress exposure in training
- 2. Use realism in training
- 3. Use of virtual reality systems
- 4. Use of physiological measures
- 5. Use of gaming platform
- 6. Use of mobile technology
- 7. Use of live training platform
- 8. Use of virtual training platform
- 9. Use of medical simulation
- 10. Focus on team or unit coherence
- 11. Detection of stress
- 12. Focus on mission readiness
 - 13. Consideration of experienced vs novice people
 - Focus on inclusion in family, relationships and society

- LAW
 ENFORCEMENT,
 MEDICAL CARE
 GIVERS, and
- FIREFIGHTERS
- Coping skills
- 2. Computer Based Training
- 3. Exercises
- 4. Mindfulness training
- 4. Long term validation of resilience training
- 5. Consistent use of one validated measure across all resilience training programs to measure its effectiveness

Three Studies

Study 1

Validate people's willingness to fight anxiety

Realistic effects of diet, sleep, and environment collectively

Study 2

Collect data to detect anxiety

Study 3

User testing Detect, Alert
and Distract
anxiety to stop
its progression

Study 1 - Background

- No study conducted on the collective effect of diet, sleep and environment on people who have PTSD or any other anxiety
- Test people's willingness to empower themselves to combat their anxiety
- Validate the need for an engineering solution which may detect anxiety and help monitor it

Study 1 – Root Cause Analysis

Study 1 - Design and Participants

Design:

Survey with 53 questions on symptoms, diet, sleep, environment, quality of life, & empowerment

Participants:

General Anxiety Disorder (GAD) - 19 Specific Phobia (SP) - 6 Social Anxiety Disorder (SAD) - 15 Panic Disorder (PD) - 16 Post-Traumatic Stress Disorder (PTSD) - 5 Obsessive Compulsive Disorder (OCD) - 3

Study 1 – Top Ten Anxiety Symptoms Reported

Study 1 – Results on Distraction Strategies

Study 1 - Results On Quality Of Life

Study 1 – Results on Pos and Neg Responses

 Positive responses are significantly higher than the negative responses (t statistics = -2.948, df = 197.3, p = 0.004)

Positive Responses	Negative Responses
Healthy diet	Unhealthy diet
≥ 8 hours of sleep	< 8 hours of sleep
Less consumption or	More consumption
interaction with	or interaction with
harmful chemicals	harmful chemicals

Study 1 - Result

Healthy diet + good sleep + less harmful substances

no anxiety

Chemicals In Diet and Environment

 Chemicals used in cereals, processed food, red dyes, sugar-free foods, nonstick cookware, plastic products, sales receipts, fertilizers, pesticides, insecticides, cleaning products, fabric making, and several other products lower mental health

FDA Chemical Allowance Limits In Products

- FDA's approach to setting harmful chemical allowance limits on the individual products is not good enough
- FDA needs to analyze the total impact of the chemicals in the products based on the daily consumption or interaction of several products containing harmful chemicals
- The combined effect of the chemicals in the diet and environment is causing a major negative impact on mental health, and it reduces people's ability to be mentally resilient

Study 1 - Results On Empowerment

91% does not take any medication or supplements

92% show a willingness to empower themselves to fight anxiety

Need an engineering solution that detects anxiety and allows people to monitor and control it as it occurs.

Prototype Engineering Solution - Planning

Prototype Engineering Solution - Development

- Agile Development
 - Major sprints
 - Creation of SW app framework
 - Integrating Android tablet with Polar H10 and receiving R-R interval to calculate HRV
 - Integrating Android tablet with Muse band and receiving brain waves scores
 - Capturing and storing baseline values
 - Capturing/analyzing/storing experiment values
 - Detecting anxiety and generating alert

Prototype Engineering Solution – Measurements

HRV Values

Chalmers et al.

Anxiety and heart rate variability

Table 2 | Meta-analysis results of HRV in specific anxiety disorders.

	No. of data sets	Number of anxious participants	Number of control participants	Comparison of anxious and control participants		
				Effect size (95% CI)	SE of summary effect size	p value
All disorders						
Time domain HRV ^a	20	1615	1402	-0.70 (-1.45 to -0.05)	0.38	0.07
HF HRV	34	915	1659	-0.29 (-0.41 to -0.17)	0.06	< 0.001
LF HRV Panic disorder	22	715	1115	-0.08 (-0.31 to 0.15)	0.09	0.49
Time domain HRV	8	264	243	-0.41 (-0.68 to -0.15)	0.13	0.002
HF HRV	16	437	520	-0.22 (-0.42 to -0.02)	0.10	0.030
LF HRV	12	360	426	-0.11 (-0.47 to 0.25)	0.18	0.544
Post-traumatic stress disorder						
Time domain HRV	4	86	76	-0.69 (-1.00 to -0.38)	0.16	< 0.001
HF HRV	7	192	525	-0.29 (-0.58 to -0.001)	0.15	0.049
LF HRV	6	183	516	-0.04 (-0.51 to 0.42)	0.24	0.854
Generalized anxiety disorder						
Time domain HRV	3	65	66	-0.55 (-0.89 to -0.21)	0.18	0.002
HF HRV	3	68	90	-0.56 (-0.87 to -0.25)	0.16	< 0.001
LF	1	16	19	0.50 (-0.16 to 1.16)	0.34	0.140
Obsessive-compulsive disorder						
HF HRV	2	40	63	-0.28 (-0.84 to 0.28)	0.29	0.328
LF HRV	1	26	24	-0.08 (-0.63 to 0.47)	0.28	0.773
Social anxiety disorder						
Time domain HRV	1	53	53	-0.40 (-0.79 to -0.02)	0.20	0.038
HF HRV	3	90	113	-0.47 (-0.74 to -0.20)	0.14	0.001
LF HRV	1	53	53	-0.25 (-0.63 to 0.13)	0.19	0.205
Specific phobia						
Time domain HRV	1	61	58	-0.38 (-0.74 to -0.02)	0.18	0.037
HF HRV	1	61	58	-0.05 (-0.41 to 0.31)	0.18	0.784
LF HRV	1	61	58	-0.05 (-0.41 to 0.31)	0.18	0.782
Mixed anxiety						
Time domain HRVb	3	1086	906	-1.52 (-4.13 to 1.08)	1.33	0.251

Brainwave Values

- Alpha waves represent meditative state
- Beta waves represent active state
 During anxiety:
- Alpha waves decreases
- & Beta waves increases

Prototype Engineering Solution - Architecture

Prototype Engineering Solution – System Reqs

- Integration of Polar H10
 - Establish BlueTooth Connection
 - Receive real-time R-R interval data
 - Derive HRV values from R-R interval
 - Continuously display HRV values in DADA App
- Integration of Muse band SDK
 - Establish BlueTooth Connection
 - Receive EEG data for alpha and beta brainwaves
 - Continuously display brainwave values in DADA App

Prototype Engineering Solution – System Reqs

- Display all measurements simultaneously
- Store all measurements separately
- Capture baseline and store baseline values
- During the experiment, compare HRV and brainwaves values to its baseline values in real-time and store all measurements
- Generate an alert if symptoms are detected and store the instances data in the App

Prototype Engineering Solution – SW Application

Study 2 – Anxiety detection algorithm

- Objective Collect data to generate anxiety detection algorithm
- Data
 - Brainwaves alpha scores, beta scores
 - HRV (derived)
- Participants
 - People with speech anxiety

- Experiment
 - Baseline data
 - Introduce stressor to cause anxiety and collect data
- Methodology
 - Capture Baseline data
 - Start Experiment
 - Introduce stressor to cause anxiety

Study 3 – Detect, Alert & Distract (DADA) Model

- Objective
 - Detect anxiety and distract it to lower its effects and stop its progression. Improve the quality of life.
- Participants
 - People with speech anxiety
- User testing DADA Model
 - Detect anxiety
 - Alert user
 - Provide distraction strategies to stop anxiety

Study 3 – DADA Benefit

Actions

- Act when alerted
- Use distraction strategy for 5-10 minutes

Results

- Lower effects of anxiety
- Stop the progression of anxiety

Impact

- Improved task performance
- Improved quality of life
- Increased mission readiness

Conclusion

- Managing diet, sleep and environment alone cannot help solve the anxiety problem
- An engineering solution that detects anxiety is an absolute need
- Monitoring and controlling the anxiety as it flares up is like putting a bandage on a cut as soon as it occurs and prevent its progression

Discussion

- Integrating two wearables:
 - Challenge integrating two BlueTooth devices
 - Challenge receiving data from two wearables simultaneously
 - Lack of proper support from the wearable manufacturers during the development
- Proper placement of the wearables is required to reduce noise in data or loss of data

Discussion

- Limited participant's motion to reduce noise in the data
- Need to create anxiety detection algorithm to detect different types of anxiety

Questions

