Air Force Institute of Technology

The Growing Importance of Models for Defense Acquisition

NDIA 22nd Systems and Mission Engineering Conference 21-24 Oct 2019

> John Colombi Professor and Program Chair, Systems Engineering john.colombi@afit.edu, 937-255-53636 x3347

U.S. AIR FORCE

Air Force Institute of Technology (AFIT)

- Graduate School of Engineering and Management
 - Department of Systems Engineering & Management

 Systems Engineering Certificate – AFMC/EN sponsored 4 Graduate courses (4 quarters part-time online) 	2-hr MBSE Overview
 Systems Engineering Masters Thesis or non-thesis (capstone) options, Online, Resident or Mixed Tracks (Human, Space, Cyber, Autonomy, SE Tools, Energy, Nuclear) 	4-hr MBSE Intro
Systems Engineering Doctoral Program	3-4 day Model Developer/ Integrator

Overwhelming demand for MBSE and SysML professional continuing education (PCE), often program-tailored, with tool demo/support

Historic Observations

Integrated Definition (IDEF) models/ SADT, 1970-80s

C4ISR Architecture Framework 1996

Unified Modeling Language (UML) 1996

Simulation Based Acquisition (SBA) late 1998

Mature simulation models throughout the acquisition lifecycle

DoD Architecture Framework 2003, 2009

52 Views (Models) to support DoD core processes - Acquisition Interoperability, PBBES, Portfolio Mgmt, Capability Engineering, Systems Engineering

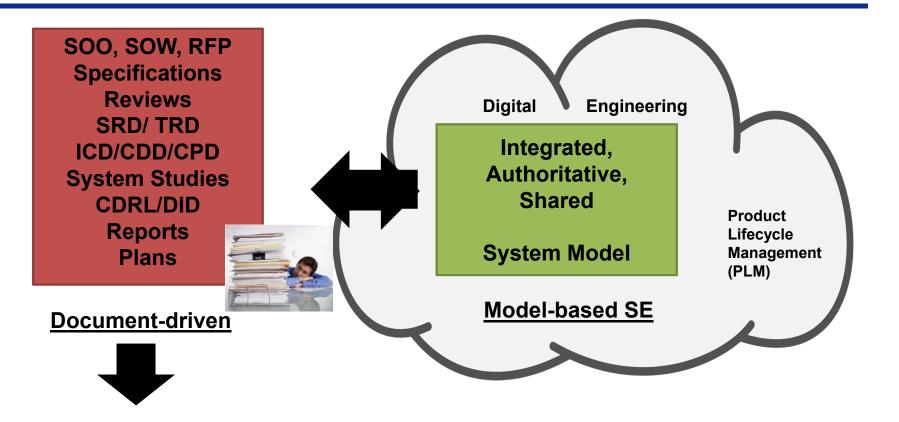
Comp Research and Eng Acq Tools and Environments (CREATE) 2011

High Performance Computing (HPC) and Modeling support

Digital Engineering Strategy 2016

Observation

Continued and growing DoD emphasis on the <u>use of models</u> to understand, design and manage complex systems

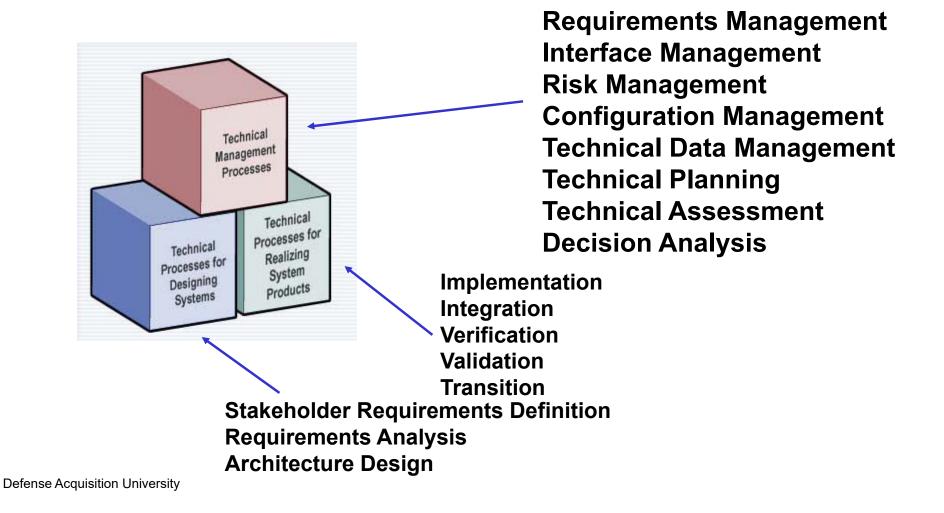

Time for success

- Widespread adoption of SysML
- Improved tools with analytical tool integrations
- Prime contractors evolving to model-based engineering
- Senior Leadership commitment
- Acquisition policies need model support (OSA, Agile/ Rapid, OTB,...)

Digital Transformation

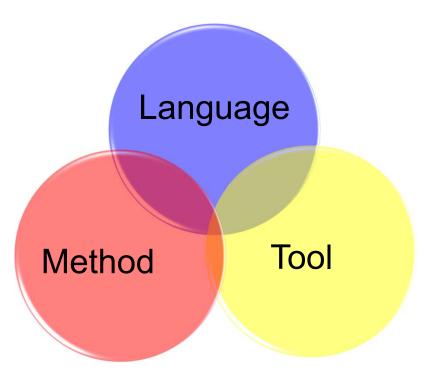
Any information missing or not easily represented

Model-Based Systems Engineering


"The formalized application of modeling to support system requirements, design, analysis, verification, and validation activities beginning in the conceptual design phase and continuing throughout development and later life cycle phases."

Need: Use of modern system modeling to improve acquisition, engineering and engineering management activities.

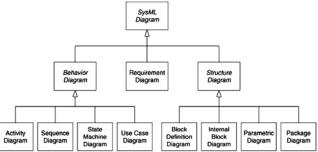
DoD Systems Engineering



Three pillars of MBSE

Implementing MBSE effectively requires...

Delligatti, SysML Distilled



4 Types of SysML Elements

S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to SysML, 4th ed, Morgan Kauffman, 2012, Chap 2.

MBSE Methods

Name	Focus	Author	Year
Functional Architecture for Systems (FAS)	Use-case driven approach (fits within and derives from SYSMOD)	Weilkiens	2010
Harmony-SE	General systems development with real-time and embedded software focus	Telelogic / IBM	2006
Magic Grid	"Zachman-like" architectural framework approach to systems modeling & architecting	NoMagic with V19	2016
Object Process Methodology (OPM)	"Conceptual modeling language and methodology fordesigning systems"	Dori	1995
Object-Oriented Systems Engineering Method (OOSEM)	Top-down, scenario-driven approach applying object-oriented analysis and design to MBSE	INCOSE	1998
Rational Unified Process SE	Development of large-scale systems which includes an architectural model	Rational / IBM	2001
State Analysis	Model- & state-focused description of the momentary, evolving condition of the system	JPL	~2010
Systems Modeling Toolbox (SYSMOD)	"A discovered set of well-known methods and practices" for systems modeling	Weilkiens	2006
ViTech MBSE	Concurrent requirements & behavior analysis, architecture synthesis, and V&V	ViTech	~2010

Select methods listed in alphabetical order

Insights of Models

Engineering has always used models

... a useful "representations of something"

MBSE System Model contains

Descriptive: SysML Elements / relationships, source docs Analytical: Quantitative or Qualitative use of Descriptive

System Model

- Technical baseline(s)
- Requirements and relationships
- Behavior definitions
- Internal and external interfaces
- Form/ Structure
- Actual Cost/ Estimated Cost
- Design viewpoints, rationale, assumptions
- Relevant system interactions
- Parametric descriptions

- Analysis definitions, results
- Plans (To-be depictions)
- Explicit Relationships trace, derive, satisfy, allocate, refine, depends
- Test equipment, behaviors/ use cases
- Simulation
- Source Documents
- Reference Architecture
- Component Libraries
- Style Guide

System model should represent an integrated, authoritative set of technical data that is useful for lifecycle management

Tech Review SysML support

- Assessment of the maturity of the design
- Requirements system, subsystem, component, configuration items,...
- Allocated baseline
- Work Breakdown structure (WBS)
- Key Performance Parameters (KPPs), Key System Attributes (KSAs), Technical Performance Measurements (TPMs) and other metrics
- TEMP (plan)

System Requirements Review (SRR)

- System requirements, system performance specification
- KPP, KSA, TPMs, and other metrics
- Conceptual designs
- Initial Capacities Document (ICD) capabilities and capability traceability
- Risk Assessment
- TEMP (plan)

Descriptive Elements

- Structure
- Behavior
- Requirements
- Relations

Analytical Elements

- Plans
- Assessment
- Evaluation
- Strategy
- Schedule

13

Tech Review SysML support

System Functional Review (SFR)

- Functional baseline satisfies the end-user requirements and capability needs
- Functional baseline satisfies performance requirements
- Performance requirements traced to (draft) CDD requirements
- Functional Configuration Audits (FCA)

System Verification Review/ Func Conf Audit (SVR/FCA)

- Actual system performance meets the requirements
- Baseline requirements meet the needs / warfighter capabilities
- Configuration items (CIs) verification

Production Readiness Review (PRR)

- Determination if the design is ready for production
- Assessment of contractor production planning vs cost, schedule, performance
- Evaluation of LRIP and Full-Rate Production (FRP) readiness
- Physical Configuration Audit (PCA) plan
- Integrated Master Schedule (IMS)/ Integrated Master Plan (IMP)

Descriptive Elements

- Structure
- Behavior
- Requirements
- Relationships

Analytical Elements

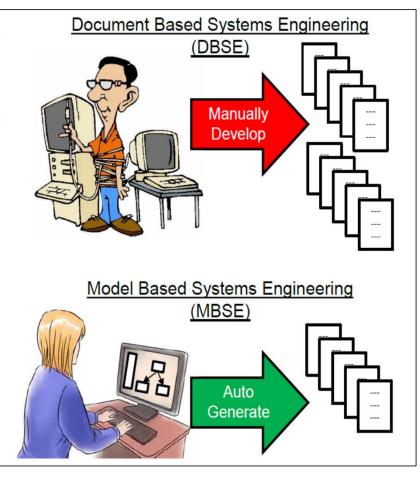
- Plans
- Assessment
- Evaluation
- Strategy
- Schedule
- Determinations

14

Tech Analysis - Air Worthiness Certification

- 1. Reliability, quality, and manufacturing program plans
- 2. Contractor policies and procedures
- 3. Durability and damage tolerance control plans
- 4. Work instructions
- 5. Process specifications
- 6. Production/assembly progress reports
- 7. Quality records
- 8. Defect/failure data
- 9. Failure modes, effects, and criticality analysis (FMECA) documentation
- 10. Tech data package
- 11. As-built list to include part numbers/serial numbers for all critical safety items/components
- 12. List of deviations/waivers and unincorporated design changes

- 13. List of approved class I engineering change proposals (ECPs)
- 14. Proposed DD Form 250, Material Inspection and Receiving Report
- **15.** Configuration management plans/process description documents
- 16. Diminishing Manufacturing Sources Plan
- 17. Obsolete Parts Plan
- 18. Test reports
- 19. Test plans
- 20. FAA Airworthiness Directives / Advisory Circulars
- 21. Manufacturer-issued service bulletins
- 22. Civil aviation authority certification plan
- 23. Civil aviation authority certification basis
- 24. Civil aviation authority certification report
- 25. System Safety Analysis Report


Document/ Data Management, Assessment, Design/ Process Evaluation

Example Program Office Expectations

- 1. Standardize program documentation
- 2. Centralized tech data repository (SysML model)
 - Examine engineering data rapidly
- 3. Improves cyber risk management
- 4. Promote training system HW & SW commonality
 - Reduce logistics cost
- 5. Change-Point time savings
- 6. Common models and language
- 7. Change management
- 8. Environmental paper savings

From Kickoff for MBSE short courses, May 2019

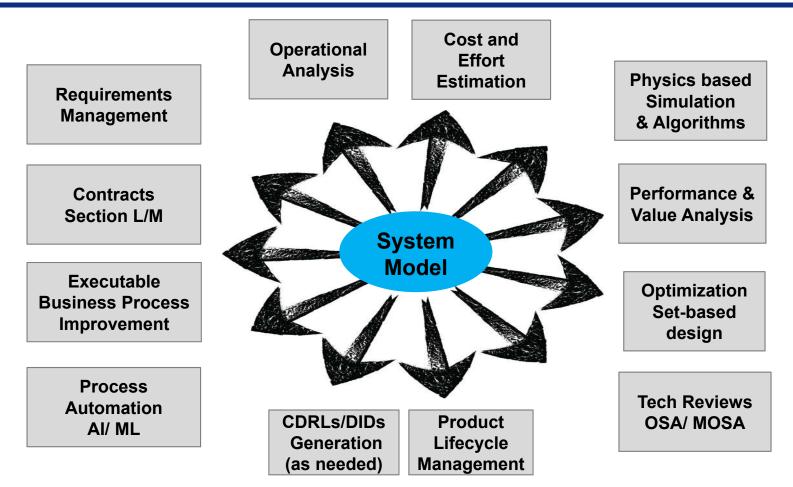
16

System Model Insights/ Opportunities

- Lost configuration control. Lot of as-is/ as-built modeling
- Insights for Tech Evaluations/ ECPs. But must avoid "over-modeling"
- Component Libraries (reuse, commonality)

Reference Architectures

- An authoritative source of information about a specific subject area that guides and constrains instantiations of multiple architectures and solutions"
- Examples: Autonomy Design #22508, UAS Prototyping #22502


Optimal Set-based Design, Requirements Analysis

 Optimal Multi-domain Design, HPC massive parallel search/sim, Multiple Objective Decision Analysis, Stochastics

MBSE Vision... Closer Reality

Adapted from Tom Wheeler, MITRE, WPAFB MBSE Workshop, 2016.