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Electronic Support - Modern Challenges
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Time of Arrival
Highly Congested Spectrum
Multifunction Radars & SDRs
 LPI Signals
 Agile/Adaptive Waveforms
 Ambiguous Waveforms
 Novel Waveforms

SORT

Time of Arrival

ID

??

EXTRACT
RF Data

Intercept, Detect, Identify, and Locate sources of RF Energy
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Components of a Digital, Cognitive ES System
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Specific Challenges of a Digital, Cognitive ES System
LPI Signals / 

Emissions Control
Agile/Adaptive 

Waveforms
Ambiguous 
Waveforms

Novel 
Waveforms

Noisy, congested 
Environment
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What do we want out of an “Intelligent” EW system?
Fidelity

The system makes the best possible decisions or inferences against known inputs.

Flexibility
The system responds to novel inputs with a reasonable guess or decision.  

Explainability
The reasoning for each of the system’s decisions can be understood by a human or external system.

Adaptability
The system can learn from and change after making mistakes or receiving novel inputs, possibly with 

external/operator assistance.

Timeliness
The system can process known or novel inputs fast enough to respond effectively.
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Traditional RF Waveform Recognition
Feature Space

Can’t adapt to 
waveforms outside 
library parameters Uses heuristics

to handle
ambiguities

OFP

EWIR

SIGINT

Adding new waveforms 
from Intel can take 

months
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Time of Arrival

SORT

Time of Arrival

IDEXTRACT

Limited extraction of 
Modulation features

Heuristic sorting 
methods don’t 

handle agility well

Adaptability POOR
Explainability GOOD
Model Fidelity MODERATE

Example System AN/ALR 56M Radar Warning Receiver 
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Bayesian RF Waveform Recognition

Feature Space
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Time of Arrival

SORT IDEXTRACT

Adaptability POOR
Explainability GOOD
Model Fidelity VERY GOOD

Example System Bayes Enhanced Electronic Support Tracker (BEEST)
 Developmed by GTRI and Matrix Technology under AFRL’s ESCE program (through FY2019)
 Uses a Multiple Hypothesis Tracker to compute probability of each likely emitter and waveform
 Successfully demonstrated at Exercise Northern Edge 2019

Statistical
resolution of 
ambiguities

Time of ArrivalPairs with 
noisy MOP
estimation
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Likelihood

Use emitter models 
to inform clustering
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Machine Learning RF Waveform Recognition
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Time of Arrival

SORT ID
EXTRACT

Adaptability VERY GOOD
Explainability POOR
Model Fidelity GOOD

Example System Neural Arrays for Autonomous Electronic Support
 DNNs for characterizing RF modulation, and classifying waveforms
 Also applied to novel waveform classification and EA technique optimization
 Currently funded by ONR to implement on GTRI’s Angry Kitten EW platform

Time of ArrivalDNN classifies 
8+ MOP types Learn optimal 

pulse sorting

RETRAIN

‘Reserve’ labels 
reduce adaptation 
time to minutes
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Pulse Detection and Feature Extraction
Conversion of raw signal data into Pulse Descriptor Words (PDWs)

Legacy Approach
 Specialized analog and digital hardware
 Dedicated circuit for each feature, so only a few are used

 Time of Arrival (TOA)
 Amplitude
 Frequency (sometimes)
 Angle of Arrival (sometimes)
 Pulse Width (sometimes)

 Low feature count makes downstream sorting and identification more difficult

Pulse Descriptor WordsSpectrogram



10

UNCLASSIFIED

Pulse Detection and Feature Extraction

I&Q data 
from FFT

Fine Frequency

Phase 
Data

Modern Approach
 COTS Field Programmable Gate Arrays (FPGAs) allow easy 

modification of firmware
 New features still requires significant human engineering
 Example system: B1 ‘Bone’ Kitten Digital Receiver

Amplitude Data

Pulse Detection Events

Enhanced PDW
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Pulse Detection and Feature Extraction
Applying Machine Learning
 New generation of chips allow low SWAP implementation 

of Deep Neural Networks (DNNs)
 Algorithms can learn an arbitrary number of features, 

and can be easily retrained
 Key limitation is quality of training data
 Example: Modulation classification for Army Signal 

Classification Challenge
 Classified 24 different modulation types from 

raw signal data
 Black box architecture uses 22+ million 

operations – but they are all very simple.
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Pulse Sorting
Grouping PDWs by common source and assembling a 
Waveform Descriptor Word (WDW)

Two Legacy Approaches
 Time Sequence Deinterleaving

 Look for common pulse repetition interval (PRIs)
 Challenging in congested environments
 Fails against agile PRI waveforms

 Pulse feature clustering
 Group together pulses by their features
 Fails when waveforms have agile pulse features
 Legacy systems sometimes have few features to begin with

Both methods ultimately require hand-coded heuristics to counter 
specific, known agilities
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Pulse Sorting
Applying Machine Learning
 A Deep Neural Network can ‘learn’ how to cluster
 Easily reconfigured to handle arbitrary feature spaces
 Example: NAAES Pulse Sorting Algorithm

Time
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Select PDW 4
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Features
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Waveform and Emitter Identification
Determine originating emitter from WDW 
Legacy Approach
 Lookup tables defined in Mission Data File
 Ambiguity increases as sensors proliferate 

and waveforms get more agile
 No innate way to resolve ambiguities

PRI

PW

Freq

Received 
Waveforms

Look Up Table (Low ambiguity)

Look Up Table (High ambiguity)

PRI

PW

Freq

1

2
3

1 =
2 =
3 =

1 =       ,       , or 
2 =       or 
3 =      ,     , orPRI

PW

Freq

Usually relies on hand-coded heuristics to counter specific, 
known ambiguities
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Waveform and Emitter Identification
Bayesian/Multiple Hypothesis Approach
 Lookup tables are now probablistic
 Ambiguities generate multiple hypotheses, that 

are tracked and score independently
 Ambiguity is preserved until resolved by sufficient 

evidence
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How do we create these probabilistic descriptions in the first place?
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Waveform and Emitter Identification
Machine Learning Approach
 Avoids lookup tables entirely
 Easily combines with sorting logic, since they can 

share both PDW and WDW representations
 Example: NAAES Pulse Classification Algorithm
 Easily adaptable/retrainable

Signal
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Deep
Neural
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Emitter Association and Geolocation
Determine if multiple sensors are observing the same 
waveforms, and fuse information to locate the emitter
Multiple Hypothesis Approach
Hypothesis A – Waveforms belong to different emitters
Hypothesis B – Waveforms belong to same emitter
 Collect evidence until sure
 Several methods to locate an emitter once the 

waveforms are correlated
 Triangulation from measured angles of arrival
 Time difference of arrival
 Frequency difference of arrival

 Geolocation methods themselves often leave 
ambiguity that is resolved over time

1 sample

100 samples

Initial 
location 

uncertainty

After 
tracking
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Adaptive Electronic Support
 Update mission data at an operational tempo
 Minimize need for human intervention

Legacy Approach to Novel Conditions
 Send it back to the SME
 Could take months

Machine Learning Approach
 Retrain the Deep Neural Network
 Takes a few minutes (10000x faster!)
 Black box - almost impossible to validate

Any other options?
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Adaptive Electronic Support
Markov Processes
Model emitters as having a randomly varying 
state, from which we get noisy observations
 Can use ‘gradient descent’ (the same calculus 

trick as Neural Networks) to rapidly update the 
model

 Computation cost scales poorly as the number 
of states increases

 May not be practical for modern, agile radars

Produces robust probabilistic models, but scales poorly
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Adaptive Electronic Support
Evolutionary Algorithms
 Example: GTRI’s EMADE python environment
Produce multiple solutions, which can be switched 
out easily as conditions change
1. Randomly tweak the components of an algorithm

 Tuning parameters
 Swap out sub-functions
 Order of sub-functions

2. Test against the new environment
3. Keep only the subset that perform well
4. Iterate until solutions stop improving

Great for updating heuristics, but doesn’t produce probabilistic results

Single Learner

Integral

Erosion Ellipse

Data 4 85 3 True

Stream to 
Features

Orthogonal 
Matching Pursuit

Visualization of algorithm decompostion
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Conclusion

 ES Mission is to Intercept, Detect, Identify, and Locate RF threats

 Legacy implementations highly stressed by software definable radars

 Need flexibility and adaptability to handle novel waveforms in a timely manner

 Algorithms must be explainable to gain warfighter’s trust 

 No magic bullet – a Cognitive ES system will have to combine various technologies 
to meet requirements, and may vary based on specific mission


