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Electronic Support - Modern Challenges
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Time of Arrival
Highly Congested Spectrum
Multifunction Radars & SDRs
 LPI Signals
 Agile/Adaptive Waveforms
 Ambiguous Waveforms
 Novel Waveforms
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RF Data

Intercept, Detect, Identify, and Locate sources of RF Energy
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Components of a Digital, Cognitive ES System
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Specific Challenges of a Digital, Cognitive ES System
LPI Signals / 

Emissions Control
Agile/Adaptive 

Waveforms
Ambiguous 
Waveforms

Novel 
Waveforms

Noisy, congested 
Environment
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What do we want out of an “Intelligent” EW system?
Fidelity

The system makes the best possible decisions or inferences against known inputs.

Flexibility
The system responds to novel inputs with a reasonable guess or decision.  

Explainability
The reasoning for each of the system’s decisions can be understood by a human or external system.

Adaptability
The system can learn from and change after making mistakes or receiving novel inputs, possibly with 

external/operator assistance.

Timeliness
The system can process known or novel inputs fast enough to respond effectively.
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Traditional RF Waveform Recognition
Feature Space

Can’t adapt to 
waveforms outside 
library parameters Uses heuristics

to handle
ambiguities

OFP

EWIR

SIGINT

Adding new waveforms 
from Intel can take 

months
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Time of Arrival

SORT

Time of Arrival

IDEXTRACT

Limited extraction of 
Modulation features

Heuristic sorting 
methods don’t 

handle agility well

Adaptability POOR
Explainability GOOD
Model Fidelity MODERATE

Example System AN/ALR 56M Radar Warning Receiver 
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Bayesian RF Waveform Recognition

Feature Space
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Time of Arrival

SORT IDEXTRACT

Adaptability POOR
Explainability GOOD
Model Fidelity VERY GOOD

Example System Bayes Enhanced Electronic Support Tracker (BEEST)
 Developmed by GTRI and Matrix Technology under AFRL’s ESCE program (through FY2019)
 Uses a Multiple Hypothesis Tracker to compute probability of each likely emitter and waveform
 Successfully demonstrated at Exercise Northern Edge 2019

Statistical
resolution of 
ambiguities

Time of ArrivalPairs with 
noisy MOP
estimation
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Likelihood

Use emitter models 
to inform clustering



8

UNCLASSIFIED

Machine Learning RF Waveform Recognition
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Time of Arrival

SORT ID
EXTRACT

Adaptability VERY GOOD
Explainability POOR
Model Fidelity GOOD

Example System Neural Arrays for Autonomous Electronic Support
 DNNs for characterizing RF modulation, and classifying waveforms
 Also applied to novel waveform classification and EA technique optimization
 Currently funded by ONR to implement on GTRI’s Angry Kitten EW platform

Time of ArrivalDNN classifies 
8+ MOP types Learn optimal 

pulse sorting

RETRAIN

‘Reserve’ labels 
reduce adaptation 
time to minutes

UNCLASSIFIED
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Pulse Detection and Feature Extraction
Conversion of raw signal data into Pulse Descriptor Words (PDWs)

Legacy Approach
 Specialized analog and digital hardware
 Dedicated circuit for each feature, so only a few are used

 Time of Arrival (TOA)
 Amplitude
 Frequency (sometimes)
 Angle of Arrival (sometimes)
 Pulse Width (sometimes)

 Low feature count makes downstream sorting and identification more difficult

Pulse Descriptor WordsSpectrogram
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Pulse Detection and Feature Extraction

I&Q data 
from FFT

Fine Frequency

Phase 
Data

Modern Approach
 COTS Field Programmable Gate Arrays (FPGAs) allow easy 

modification of firmware
 New features still requires significant human engineering
 Example system: B1 ‘Bone’ Kitten Digital Receiver

Amplitude Data

Pulse Detection Events

Enhanced PDW
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Pulse Detection and Feature Extraction
Applying Machine Learning
 New generation of chips allow low SWAP implementation 

of Deep Neural Networks (DNNs)
 Algorithms can learn an arbitrary number of features, 

and can be easily retrained
 Key limitation is quality of training data
 Example: Modulation classification for Army Signal 

Classification Challenge
 Classified 24 different modulation types from 

raw signal data
 Black box architecture uses 22+ million 

operations – but they are all very simple.
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Pulse Sorting
Grouping PDWs by common source and assembling a 
Waveform Descriptor Word (WDW)

Two Legacy Approaches
 Time Sequence Deinterleaving

 Look for common pulse repetition interval (PRIs)
 Challenging in congested environments
 Fails against agile PRI waveforms

 Pulse feature clustering
 Group together pulses by their features
 Fails when waveforms have agile pulse features
 Legacy systems sometimes have few features to begin with

Both methods ultimately require hand-coded heuristics to counter 
specific, known agilities
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Pulse Sorting
Applying Machine Learning
 A Deep Neural Network can ‘learn’ how to cluster
 Easily reconfigured to handle arbitrary feature spaces
 Example: NAAES Pulse Sorting Algorithm
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Waveform and Emitter Identification
Determine originating emitter from WDW 
Legacy Approach
 Lookup tables defined in Mission Data File
 Ambiguity increases as sensors proliferate 

and waveforms get more agile
 No innate way to resolve ambiguities

PRI

PW

Freq

Received 
Waveforms

Look Up Table (Low ambiguity)

Look Up Table (High ambiguity)

PRI

PW

Freq

1

2
3

1 =
2 =
3 =

1 =       ,       , or 
2 =       or 
3 =      ,     , orPRI

PW

Freq

Usually relies on hand-coded heuristics to counter specific, 
known ambiguities
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Waveform and Emitter Identification
Bayesian/Multiple Hypothesis Approach
 Lookup tables are now probablistic
 Ambiguities generate multiple hypotheses, that 

are tracked and score independently
 Ambiguity is preserved until resolved by sufficient 

evidence
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How do we create these probabilistic descriptions in the first place?
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Waveform and Emitter Identification
Machine Learning Approach
 Avoids lookup tables entirely
 Easily combines with sorting logic, since they can 

share both PDW and WDW representations
 Example: NAAES Pulse Classification Algorithm
 Easily adaptable/retrainable
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Emitter Association and Geolocation
Determine if multiple sensors are observing the same 
waveforms, and fuse information to locate the emitter
Multiple Hypothesis Approach
Hypothesis A – Waveforms belong to different emitters
Hypothesis B – Waveforms belong to same emitter
 Collect evidence until sure
 Several methods to locate an emitter once the 

waveforms are correlated
 Triangulation from measured angles of arrival
 Time difference of arrival
 Frequency difference of arrival

 Geolocation methods themselves often leave 
ambiguity that is resolved over time

1 sample

100 samples

Initial 
location 

uncertainty

After 
tracking
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Adaptive Electronic Support
 Update mission data at an operational tempo
 Minimize need for human intervention

Legacy Approach to Novel Conditions
 Send it back to the SME
 Could take months

Machine Learning Approach
 Retrain the Deep Neural Network
 Takes a few minutes (10000x faster!)
 Black box - almost impossible to validate

Any other options?
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Adaptive Electronic Support
Markov Processes
Model emitters as having a randomly varying 
state, from which we get noisy observations
 Can use ‘gradient descent’ (the same calculus 

trick as Neural Networks) to rapidly update the 
model

 Computation cost scales poorly as the number 
of states increases

 May not be practical for modern, agile radars

Produces robust probabilistic models, but scales poorly
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Adaptive Electronic Support
Evolutionary Algorithms
 Example: GTRI’s EMADE python environment
Produce multiple solutions, which can be switched 
out easily as conditions change
1. Randomly tweak the components of an algorithm

 Tuning parameters
 Swap out sub-functions
 Order of sub-functions

2. Test against the new environment
3. Keep only the subset that perform well
4. Iterate until solutions stop improving

Great for updating heuristics, but doesn’t produce probabilistic results

Single Learner

Integral

Erosion Ellipse

Data 4 85 3 True

Stream to 
Features

Orthogonal 
Matching Pursuit

Visualization of algorithm decompostion
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Conclusion

 ES Mission is to Intercept, Detect, Identify, and Locate RF threats

 Legacy implementations highly stressed by software definable radars

 Need flexibility and adaptability to handle novel waveforms in a timely manner

 Algorithms must be explainable to gain warfighter’s trust 

 No magic bullet – a Cognitive ES system will have to combine various technologies 
to meet requirements, and may vary based on specific mission


