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OUTLINE

• Background & Resources

• Why Use DOE for M&S? 

• Why is DOE important?

• Overview of Design of Experiments (DOE)

• Efficient M&S Using DOE – 3 Examples

• Sequential traditional DOE

• Space-Filling DOE Case Study

• Sequential space-filling DOE
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USING DESIGN OF 

EXPERIMENTS (DOE) 

FOR 35 YEARS

• ‘83-’87 Honeywell, Inc., Engineer
First saw the power of DOE in 1984

• ‘87-’99 ECHIP, Inc., Partner & Technical Director
200+ DOE courses, on-site at 40+ companies

• ‘99-’05 Peak Process, LLC, Consultant

• ‘05-’08 US Army, Edgewood Chemical Biological Center (ECBC), 

Modeling, Simulation, & Analysis Branch
DOE with Real data and Modeling & Simulation data

• ’08-’19 SAS Institute Inc., JMP Division
Data Visualization, Data Analytics, and their synergy with DOE 

Support DoD sites, NASA, & Defense Contractors
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PROJECTS USING DOE AT U.S. ARMY ECBC CY05-08

• JPM Nuclear Biological Chemical Contamination Avoidance (NBCCA) - Whole Systems Live Agent Test 
(WSLAT) Team support to the Joint Biological Point Detection System (JBPDS)

• Agent Fate wind tunnel experiments

• Decontamination Sciences Team

• Contact Hazard Residual Hazard Efficacy Agent T&E Integrated Variable Environment (CREATIVE)  -
real and simulation data

• Modified vaporous hydrogen peroxide (mVHP) decontamination – real data

• Smoke and Target Defeat Team

• Pepper spray characterization – real data

• Obscurant material evaluation (with OptiMetrics, Inc.) – simulation data

• U.S. Army Independent Laboratory In-house Research (ILIR) on novel DOE used with simulations

• Re-analysis of USAF Kunsan AFB Focused Effort BWA simulation data

• CB Sim Suite used for sensitivity analysis of atmospheric stability

• U.S. Marine Corps Expeditionary Biological Detection (EBD) Advanced Technology Demonstration (ATD)

• Chamber testing of detectors – real data

• CB Sim Suite sensor deployment studies – simulation data

• U.S. Navy lead on Joint Expeditionary Collective Protection (JECP)

• Swatch and chamber testing – real data

• Computational Fluid Dynamics (CFD) – simulation data
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DOWNLOADS

• PDFs available

• White Paper 2008 - Efficient Modeling & Simulation of Biological Warfare Using 

Innovative Design of Experiments Methods – Tom Donnelly 

https://www.jmp.com/en_us/whitepapers/jmp/modeling-biological-warfare.html

• Dissertation 2017 - A framework for the optimization of doctrine and systems in 

Army Air Defense units using predictive models of stochastic computer 

simulations – LTC Brian Wade, Technical Director at TRAC MRY 

https://smartech.gatech.edu/handle/1853/58275
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https://www.jmp.com/en_us/whitepapers/jmp/modeling-biological-warfare.html
https://smartech.gatech.edu/handle/1853/58275


RECORDINGS AT WWW.JMP.COM/FEDGOV>
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https://community.jmp.com/t5/US-Federal-Government-JMP-Users/Efficient-M-amp-S-Using-DOE-Methods-JMP-14/ta-p/69547

https://community.jmp.com/t5/US-Federal-Government-JMP-Users/Efficient-M-amp-S-Using-DOE-Methods-JMP-14/ta-p/69547


DOWNLOAD & RECORDING

7https://community.jmp.com/t5/US-Federal-Government-JMP-Users/VIDEO-of-C-5-Decision-Support-Tool-Dashboard/ta-p/34364

https://ntrs.nasa.gov/search.jsp?R=20110012110

• 16 Factors

• 50,000 unique cases

• Each 1,000 times

• 50 Million Simulations

• Neural Network

Surrogate Models

https://ntrs.nasa.

gov/search.jsp?

R=20110012110

Recording

Download Document

https://community.jmp.com/t5/US-Federal-Government-JMP-Users/VIDEO-of-C-5-Decision-Support-Tool-Dashboard/ta-p/34364
https://ntrs.nasa.gov/search.jsp?R=20110012110
https://ntrs.nasa.gov/search.jsp?R=20110012110


WHY USE DESIGN OF EXPERIMENTS

METHODS WITH SIMULATION EXPERIMENTS?

Quicker answers, lower costs, solve bigger problems

• Obtain a fast surrogate model of the simulation
• Individual simulations can run for hours, days, weeks

• Computational Fluid Dynamics (CFD) or Simulation runs in real-time

• Numbers of factors can be very large (100+)

• Numbers of simulations needed can be large (thousands in many cases)

• Simulations can be stochastic requiring many replications

• Surrogate model yields a fast approximation of the simulation
• more rapidly answer “what if?” questions – Instantaneous answer for any “NEW” scenario!

• do sensitivity analysis of the control factors

• optimize multiple responses and make trade-offs

• By running sequences of designs one can be as cost effective as possible 

& run no more trials than are needed to get a useful answer

• By running efficient subsets of all possible combinations, one can – for the 

same resources and constraints – solve bigger problems
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WHY IS USING DOE IMPORTANT?

• “One thing we have known for many months is that the spigot 

of defense funding opened by 9/11 is closing.”

• “In the past, modernization programs have sought a 99 

percent solution over a period of years, rather than a 75 

percent solution over a period of weeks or months.”

• Two quotes from the January 27, 2009 submitted statement of Secretary 

of Defense Robert M. Gates to the Senate Armed Services Committee.

• DOE is one of the more powerful tools we can use to efficiently 

accomplish our goals. 
• DOE yields the maximum information from the fewest experiments.

• DOE often yields an 80% solution in less than 20% of the work.
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LONG RUNNING PHYSICS-BASED SIMULATIONS
Detailed Physics Models can require a great deal of runtime 

to generate a short period of simulation time.

Computational Fluid Dynamics (CFD) Models Lagrangian-Particle

Developed for Interior

Moving Man in Simulation

8M cells

10 Seconds of Simulation

64 CPUs – 4K slower

12 Hours of Runtime

Detailed Ingress/Egress, 

Internal Airflow and 

Convection

Developed for Exterior

Stationary Grids

1.5M Cells

30 Seconds of Simulation

Single CPU – 20K slower

7 Days of Runtime

External CW Deposition/ 

Evaporation, Vegetation, 

Solar Heating

Developed for Exterior

Stationary Grids

TBD Cells

Min-Hours of Simulation

Single CPU

Minutes-Days of Runtime

Speed, Flexibility, More 

User Friendly, V&V



Red-Blue Force Agent Based Simulation

STOCHASTIC SIMULATIONS WITH MANY REPLICATES

Agent Based Simulations



STOCHASTIC SIMULATIONS WITH MANY REPLICATES

Discrete Event Simulations



CLASSIC DEFINITION OF DOE

• Purposeful control of the inputs (factors) in such a way as to 

deduce their relationships (if any) with the output (responses).
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Noise

Uncontrolled  Factors 

e.g. . Humidity



RESPONSE SURFACE DOE IN A NUTSHELL
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Fit requires 

data from all 

3 blocks

Can fit data 

from blocks 

1, 2 or 3

Fit requires 

data from 

blocks 1 & 2

Lack-of-fitLack-of-fit

Block 3Block 1 Block 2

x1

x3 x3x3

x1x1



4 CONTROLS (INPUTS) & 2 

RESPONSES (OUTPUTS) AND THEIR 

EMPIRICAL RELATIONSHIPS (MODEL)
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Get these Response Surfaces and Prediction Profiler 
as result of analyzing data collected for a DOE



ASSESS UNCERTAINTY IN SURROGATE MODEL PREDICTIONS EVEN 

FOR A DETERMINISTIC SIMULATION WITH NO REPLICATIONS
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For non-stochastic simulations for which a surrogate model has been created, 

Monte Carlo simulations can be run using assumed distributions for inputs to 

better assess transmitted variation about the model point estimate.



TWO CLASSES OF DESIGNS FOR TWO TYPES OF 

SURROGATE MODELING OF SIMULATIONS

• Traditional factorial/response surface designs for polynomial modeling 

with categorical (qualitative) and continuous (quantitative) variables
• Designs can be sequentially constructed to support increasingly complex models

• Example featured here reanalyzes a simulation case matrix in which all combinations of 6 variable settings were 

originally run- a total of 648 = 6 X 3 X 3 X 3 X 2 X 2
• References on Resolution V, Fractional-Factorial Designs for many (40+) factors 

• Mee, R. W. (2004), Efficient Two-Level Designs for Estimating Main Effects and Two-Factor Interactions, Journal of Quality Technology, 36, 400-412.

• Sanchez, S.M. and Sanchez, P.J. (2005), Very Large Fractional Factorial and Central Composite Designs, ACM Transactions on Modeling and Computer 

Simulation, Vol. 15, No. 4, October 2005, Pages 362–377.

• Xu, H. (2009), Algorithmic Construction of Efficient Fractional Factorial Designs with Large Run Sizes, Technometrics,  

http://www.stat.ucla.edu/~hqxu/pub/ffd2r3.pdf

• Space-filling designs primarily for use with continuous and categorical 

variables AND non-stochastic/deterministic responses
• These designs can support “Gaussian Process” or “Kriging” spatial regression analysis – an interpolation 

technique, as well as linear regression – an approximation method

http://www.stat.ucla.edu/~hqxu/pub/ffd2r3.pdf


HOW ARE SPACE-FILLING DESIGNS

DIFFERENT FROM TRADITIONAL DESIGNS?
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Rather than emphasizing high leverage trials (“corners”) for a simple polynomial 

model, space-filling designs “spread” their trials more uniformly through the 

space to better capture the local complexities of the simulation model.
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TRADITIONAL DESIGNS FOR POLYNOMIAL MODELING

• I used to say “If a “textbook” fractional-factorial, orthogonal array or 

response-surface design is available, then use it.”  

Now I say, “If Definitive Screening design is available, then use it.”

• Textbooks and web site catalogs do not always contain designs for 

categorical variables with:
• all combinations of mixed numbers of levels (e.g. 3, 4, 5, and 21)

• large numbers of levels for variables (e.g. 5+) 

• Algebraic (Orthogonal Array) and algorithmic (D-optimal) computer generated 

designs can often be used
• Orthogonal Arrays (and Nearly Orthogonal Arrays) are good at yielding analysis with un-

confounded estimates of the “main effects” when variables have many different levels

• D-optimal designs are good for adding on the fewest additional trials to support higher 

order “interaction” terms in the model



SEQUENTIAL DESIGNS

• Simulation experiments – Sequential designs are easily employed because 

“restricted randomization” is not an issue

• Many simulations are deterministic

• Even if stochastic (random), correlation with unknown factors is not possible

• All factors are generally just as easy to change

• Can still inexpensively add a blocking variable to test if “the code has been changed!”

• Real experiments – The issue of “restricted randomization” does arise making 

sequential experimentation a bit more complicated – but still possible to employ

• Groups of trials run at different (even widely spaced) periods of time

• Addressed using a blocking factor

• Sometimes there are factors that are harder to change than others, e.g. Oven Temperature

• Addressed using split-plot designs
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CASE MATRIX AS USED IN STUDY OF THE OBSERVED 

RESPONSE “PROBABILITY OF CASUALTY” (PCAS)

Variable # Levels Levels

Agent Codes (X1) 6 A, N, T, H, R, Y  (categorical)

Season 3 Winter, Summer, Spring/Fall  (categorical)

Time of Attack (Hour) 3 0500, 1200, 2200 Local Time  (continuous)

No. of TBMs & Spread 

Radius (X2)
2 1 TBM & 1 m, 2 TBMs & 1000 m  (categorical)

Mass (relative) 3 1.00, 1.57, 2.00 (continuous)

Height of Burst (X3) 2 0, 10 m (continuous)

Total Cases 648



TBM = 1, 

HoB = 0

TBM = 1, 

HoB = 0

TBM = 2, 

HoB = 10

TBM = 2, 

Hob = 10

Agent = A Agent = N Agent = T Agent = H Agent = R Agent = Y

ALL 648 POSSIBLE COMBINATIONS OF SETTINGS

FOR 6 VARIABLES (6 X 2 X 2 X 3 X 3 X 3)
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FOUR STAGE DESIGN SEQUENCE
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Stage 1 Stage 2 Stage 3 Stage 4

Design 1, 36 trials Design 1, 36 trialsDesign 1, 36 trialsDesign 1, 36 trials

Design 3, 216 trials

Design 4, 324 trials

36 Total

Simulations 

ALL 648

Simulations 

324 Total

Simulations 

108 Total

Simulations

Design 2, 72 trials Design 2, 72 trials

Design 3, 216 trials

Design 2, 72 trials

5.6% of 648 16.7% of 648 50% of 648

NOTE:  Length of this 

green box should be  

longer than shown

Main effects only 

for ALL variables

+ some 2-way 

interactions

Stage 3 effects 

plus ALL 

remaining 4-way, 

5-way and 6-way 

interactions

Stage 2 effects 

plus all 3-way 

interactions

Stage 1 effects 

plus all 2-way 

interactions

+ some 3-way 

interactions

324 trials in Design 4 used as checkpoints for Designs 1, 2 & 3



TBM = 1, 

HoB = 0

TBM = 1, 

HoB = 0

TBM = 2, 

HoB = 10

TBM = 2, 

Hob = 10

Agent = A Agent = N Agent = T Agent = H Agent = R Agent = Y

36 OF ALL 648 POSSIBLE COMBINATIONS OF SETTINGS

FOR 6 VARIABLES (6 X 2 X 2 X 3 X 3 X 3)

24Red Dots Mark the 36 Trials (an Orthogonal Array) Analyzed for Stage 1



X1 X2 X3 X4

1  1  1  1

1  2  2  2

1  3  3  3

2  1  2  3

2  2  3  1

2  3  1  2

3  1  3  2

3  2  1  3

3  3  2  1

X2

X4
X3

X1 = 1 X1 = 3X1 = 2

Locations of Trials for a

4-variable, 9-trial Orthogonal Array Design



Delete X1 and View Locations of Trials 

for a  3-Variable OA9 Design

X1 = 1 X1 = 3X1 = 2

X2

X4

X3

X1 X2 X3 X4

1 1  1  1

1 2  2  2

1 3  3  3

2 1  2  3

2 2  3  1

2 3  1  2

3 1  3  2

3 2  1  3

3 3  2  1



Projection of Trial Locations

for a 3-variable OA9 Design for All Pairs of Variables

All projections have 9 

unique trials that can 

be used to fit a 2-

variable quadratic 

model with 6 terms

X2

X4

X3

X4

X3

X2

X3

X2

X4
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Can Get Designs from Different Sources

▪ Textbook

▪ Limited number of catalogued solutions – experimenters 
frequently change their problem to match available designs

▪ Variable settings are in coded units

▪ Web sites of designs

▪ Greater number of catalogued solutions – but never all

▪ Variable settings are in coded units

▪ Custom computer code

▪ Can find solutions for previously un-catalogued cases

▪ Variable settings are in coded units (-1, 0, 1)

▪ COTS Solution

▪ Textbook and algorithmic code for generating custom designs

▪ Variable settings in natural or laboratory units (120, 150, 180)
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Agent = R

Season = F

Time = 12

HOR = 0

#TBM &

Spread Radius = 1

Five other variables 

were held constant at 

these settings:

95% Prediction Limits

Predicted Mass
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Agent = R

Season = F

Time = 12

HOR = 0

#TBM &

Spread Radius = 1

Agent = R

Season = F

Time = 12

HOR = 0

#TBM &

Spread Radius = 1

Five other variables 

were held constant at 

these settings:

95% Prediction Limits

Predicted Mass

95% Prediction Limits

Predicted Mass

1-way model w/nesting Reduced 2-way model Reduced 3-way model

1-way model w/nesting

+ some 2-way terms

Reduced 2-way model

+ some 3-way terms

PREDICTIONS (W/95% PRED. LIMITS) OF PCAS VS. NESTED MASS AND 

MUNCNT_SPREAD FOR 1-WAY, REDUCED 2-WAY AND REDUCED 3-WAY MODELS



“FACTOR SPARSITY” AND “EFFECT HEREDITY” 

USED TO ENHANCE MODEL COMPLEXITY 

30

Factor Sparsity states only a few 

variables will be active in a 

factorial DOE

Effect Heredity states significant 

interactions will only occur if at 

least one parent is active

See Wu & Hamada, p. 112

Worst Case = 3.7%

Half of Cases < 0.37%

Worst Case = -0.0081%

Half of Cases < 0.0007%

Worst Case = -0.93%

Half of Cases < 0.11%

Worst Case = -2.5%

Half of Cases < 0.16%

Worst Case = -0.0251%

Half of Cases < 0.0010%

324 trials36 trials 108 trials

Oct. 1, 2007 visit by Profs. Wu & Joseph of GA Tech ISyE

1-way w/nesting model

2-way + some 3-way

terms model

Reduced 3-way modelReduced 2-way model

1-way + some 2-way

terms model



Higher Resolution (100X) Histograms of the “Percent Off Target” that 

Response Predictions Fell Relative to 324 Checkpoint Observations 

ONLY A FRACTION OF ALL POSSIBLE TRIALS 

MAY BE REQUIRED TO PROVIDE AN ANSWER

31

Worst Case = -0.0081%

Half of Cases < 0.0007%

Worst Case = -0.0251%

Half of Cases < 0.0010%

324 trials108 trials

How far off is good enough?



CONCLUSIONS FOR SEQUENTIAL TRADITIONAL DESIGNS

• Possible to get the 80% to 95% solution with less than 

20% of the brute force running of all factor combinations

• Use of “factor sparsity” and “effect heredity” principles 

can help to get more information than the design was 

originally built to support

• Next stage trials can first be used as checkpoints for 

previous stages

• With improved efficiency over running all combinations, 

more factors can be studied with the same resources

32



HOW ARE SPACE-FILLING DESIGNS

DIFFERENT FROM TRADITIONAL DESIGNS?

33
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model, space-filling designs “spread” their trials more uniformly through the 

space to better capture the local complexities of the simulation model.
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29 CFD SIMULATIONS RUN – 17 USED TO 

METAMODEL & 12 USED AS CHECKPOINTS

34

17-trial Orthogonal Latin 

Hypercube (OLH) space-

filling design settings 

used for creating the 

metamodel

12-trial Plackett-Burman 

screening design settings 

used as checkpoints –

half just inside and half 

just outside design 

boundary (convex hull)

Trial
Time of 

Day
Temperature

Wind 

Speed

Wind 

Direction

Relative 

Humidity

Cloud 

Cover

1 505 37 5.3 247.5 30 0.92

2 165 13 5.6 281.25 10 0.32

3 250 19 1.7 225 60 0.8

4 335 25 2.9 360 55 0.14

5 1100 35 3.5 202.5 35 0.02

6 1440 15 3.2 326.25 15 0.74

7 930 11 6.2 236.25 80 0.44

8 845 33 5 348.75 75 0.62

9 760 21 3.8 270 50 0.5

10 1015 5 2.3 292.5 70 0.08

11 1355 29 2 258.75 90 0.68

12 1270 23 5.9 315 40 0.2

13 1185 17 4.7 180 45 0.86

14 420 7 4.1 337.5 65 0.98

15 80 27 4.4 213.75 85 0.26

16 590 31 1.4 303.75 20 0.56

17 675 9 2.6 191.25 25 0.38

18 972.5 26 3.05 298.125 62.5 0.65  Inside

19 547.5 16 4.55 241.875 62.5 0.65  Outside

20 972.5 26 3.05 241.875 37.5 0.65  Outside

21 547.5 26 4.55 298.125 37.5 0.35  Outside

22 972.5 16 4.55 298.125 62.5 0.35  Inside

23 547.5 16 3.05 241.875 37.5 0.35  Inside

24 547.5 26 4.55 241.875 62.5 0.65  Outside

25 972.5 16 4.55 298.125 37.5 0.65  Inside

26 547.5 26 3.05 298.125 62.5 0.35  Inside

27 547.5 16 3.05 298.125 37.5 0.65  Outside

28 972.5 16 3.05 241.875 62.5 0.35  Outside

29 972.5 26 4.55 241.875 37.5 0.35  Inside

- Min

- Max

- Mid



KRIGING FIT IN 1-D SHOWING INTERPOLATION

AND CONFIDENCE INTERVALS ON PREDICTION
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SEMINAL PAPER ON “SPACE-FILLING” 

DOE FOR COMPUTER EXPERIMENTS

• Design and Analysis of Computer Experiments

Sacks, J., Welch, W.J., Mitchell, T.J. and Wynn, H.P. 

Statistical Science 4. 409-423, 1989

• Textbooks on this topic include:

• Santner, T. J., Williams, B. J., and Notz, W. I. (2003), The Design and

Analysis of Computer Experiments, Springer, New York (2nd in 2018)

• Fang, K. T., Li, R. Z., and Sudjianto, A. (2005), Design and Modeling

for Computer Experiments, Chapman & Hall/CRC Press, New York

• Kleijnen, J. P. C. (2008), DASE: design and analysis of simulation

experiments. Springer, New York. (2nd in 2015)
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WEBSITES FOR DESIGNS, SOFTWARE & PUBLICATIONS

• http://harvest.nps.edu/ The Simulation Experiments & Efficient Design (SEED) 

Center for Data Farming at Naval Postgraduate School
• Designs 

• Nearly Orthogonal Latin Hypercubes (NOLH) and

• Resolution V, Fractional Factorials for many factors

• Agent-Based Simulation Software 

• Pythagoras 

• MANA (Map Aware Non-uniform Automata) 

• Many Papers for Download and Links to INFORMS and WSC

• Library of Orthogonal Arrays maintained by Neil J. A. Sloane

• http://neilsloane.com/oadir/

• Library of Orthogonal Arrays maintained by Warren F. Kuhfield

• https://support.sas.com/techsup/technote/ts723b.pdf

http://neilsloane.com/oadir/
https://support.sas.com/techsup/technote/ts723b.pdf


SURROGATE MODELING OF A COMPUTER SIMULATION

HELICOPTER SURVEILLANCE – IDENTIFYING INSURGENTS

• 2009 International Data Farming Workshop - IDFW21, Lisbon, Portugal

• Largely German team (6 of 8) – their simulation

• 6500 simulations run overnight on cluster in Frankfurt

• Space Filling Design of Experiments (DOE)

• 65 unique combinations of 6 factors (each factor at 65 levels) 

• each case had 96 to 100 replications (lost a few)

• Response = Proportion of Insurgents Identified = 

PropIdentINS Data bounded between 0 and 1

• Explore data visually first

• Fit many different models – Regression and Machine Learning 

using “Train, Validate (Tune), Test” subsets

• Compare Actual vs. Predicted for Test Subsets



SPACE-FILLING DOE (LATIN HYPERCUBE)

VISUALIZED WITH 2-D SCATTERPLOT MATRIX

AND 3-D SCATTERPLOT



DISTRIBUTIONS OF 1 RESPONSE AND 6 FACTORS



PROPIDENTINS VS. X 

FOR 6 FACTORS



PROPIDENTINS VS. X FOR 6 FACTORS



PROPIDENTINS VS. CAMOUFLAGE AT DIFFERENT HEIGHTS



HONEST ASSESSMENT APPROACH

USING TRAIN, VALIDATE (TUNE), AND TEST SUBSETS

Used in model selection and estimating its prediction error on new data

The Elements of Statistical Learning – Data Mining, Inference, and Prediction

Hastie, Tibshirani, and Friedman – 2001 

(Chapter 7: Model Assessment and Selection)



R-SQUARE VS. NUMBER OF SPLITS

(FOR A RANDOM SPLIT INTO TRAIN, VALIDATE, & TEST)

Train

Test

Validate (Tune)



DECISION TREE

1

0

3 2

45

Each split finds the cut point among all factors that creates the 

biggest difference in the means of the two partitions of the data



DECISION TREE

Can be interpreted as a series 

of nested “If” statements

1

0

3 2

45

0

1R

2R

3 but pred. @ 2L 5R 4R

Each split finds the cut point among all factors that creates the 

biggest difference in the means of the two partitions of the data



HONEST 

ASSESSMENT

WHEN DATA MINING

SUBSET DATA TO CREATE TRAIN, VALIDATE(TUNE), & TEST GROUPS

USE VALIDATE(TUNE) GROUP TO PREVENT OVERFITTING DATA MINING MODELS

20 more splits to raise Val 

R^2 from 0.908 to 0.915

First 5 splits raise Val 

R^2 from 0 to 0.908

1

3 2

45



COMPARE SEVERAL MODELS
Logistic Regression, Partition with 5-Splits, Neural Network, & LASSO Binomial



ACTUAL VS. PREDICTED PLOTS FOR TEST DATA ONLY

Four Models

1. Logistic Regression

2. Partition with 5-Splits

3. Neural Network

4. LASSO Binomial



ACTUAL VS. PREDICTED PLOTS 

FOR TEST DATA ONLY

LOGISTIC REGRESSION

PARTITION WITH 5-SPLITS

NEURAL NETWORK

LASSO BINOMIAL 



WHY IS A SEQUENTIAL APPROACH SO USEFUL?

52

We wanted to not just do sensitivity analysis of the factors, but provide an 

interactive surrogate model of the long-running simulation so that 

analysts could evaluate “what if?” scenarios.  

The problem was that the Computational Fluid Dynamics models we were 

looking to run could take a week on a single CPU or 12 hours on 50 CPU 

cluster.  With on the order of 10 factors we expected to need to run on the 

order of 100 simulations.  This meant it could be weeks or months 

before we could start our analysis.  

Nested Latin Hypercube Designs gave us a way to start analyzing data 

after about the first 20% of the simulations were run.  We also wanted to 

be able to run just enough simulations to achieve a surrogate model 

accuracy of 90%.  



PROJECTIONS OF TRIAL LOCATIONS IN 2 FACTORS 

FOR A 10-FACTOR, 128-TRIAL, NESTED LATIN 

HYPERCUBE DESIGN* (NLHD) WITH 4 BLOCKS
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Block 1, 16 trials Block 2, 16 trials Block 3, 32 trials Block 4, 64 trials

Blocks 1 & 2, 32 trials Blocks 1, 2, 3 & 4, 128 trialsBlocks 1, 2 & 3, 64 trials

Running totals of 

blocks are also Latin 

Hypercube Designs

*Generated with Matlab Code Received from Prof. Peter Qian of U of Wi.



WHY RUN SIMULATIONS IN SEQUENTIAL BLOCKS?

The point of running this sequence of blocks is to be able to evaluate the surrogate 

model after each stage to see how accurately it is predicting observed values of 3 

sets of checkpoint trials.  If it proves to be sufficiently accurate, then subsequent 

blocks of simulation trials need not be run.

Without the NLHD approach one has to choose the “right” size space-filling design in 

order to get useful results.  If you choose too small a design, one has to start over 

with a larger design.  



COMPARE RESPONSE SURFACES FOR FIT OF 16 VS. FIT OF 128 
TRIALS (LEFT) AND FOR FIT OF 64 VS. FIT OF 128 TRIALS (RIGHT)

Stage 1 fit of16 trials colored green

Stage 4 fit 128 trials colored brown 

Stage 3 fit 64 trials colored purple



ACCURACY OF SURROGATE PREDICTIONS FOR 3 GROUPS OF CHECK-

POINTS YIELDING MARGINAL, MODERATE AND EXTREME EXTRAPOLATION

56

% Off Target for 

Points Fit with 

Gaussian 

Process 

Modeling

% Off Target for 

Checkpoints 

NOT Included

in Model Fit

Trial Group vs. % Off Target as Sequential NLHD Blocks are Fit

1st Block - 16

2nd Block - 16

3rd Block - 32

4th Block - 64

Chk.Pts. A - 5/16 range - 12

Chk.Pts. B -1/2 range - 12
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PLOTS OF ACTUAL VS. PREDICTED (SIMULATION VS. SURROGATE)

BY CHECKPOINT GROUP FOR 4 STAGES OF ANALYSIS OF NLHD
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Checkpoint Groups A 

& B show diminishing 

return in prediction 

improvement for 

running past stage 3



CONCLUSIONS SEQUENTIAL SPACE-FILLING DESIGNS

•NLHD designs can be run sequentially so that surrogate model 
accuracy can be evaluated after each block and decision made 
as to whether or not to move forward with the next block

•Generally as more NLHD blocks are run, the surrogate model 
accuracy increases 

•Inclusion of extreme (full range) extrapolation checkpoints will 
expand interpolation volume of Kriging analysis – assuming 
Kriging analysis remains stable

•Caveat: These conclusions were reached using a moderately 
complex transcendental function in lieu of a CFD simulation 
model that is believed to do a good job of stressing 
extrapolation with the surrogate model..
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WHY USE DESIGN OF EXPERIMENTS

METHODS WITH SIMULATION EXPERIMENTS?

Quicker answers, lower costs, solve bigger problems

• Obtain a fast surrogate model of the simulation
• Individual simulations can run for hours, days, weeks

• Computational Fluid Dynamics (CFD) or Simulation runs in real-time

• Numbers of factors can be very large (100+)

• Numbers of simulations needed can be large (thousands in many cases)

• Simulations can be stochastic requiring many replications

• Surrogate model yields a fast approximation of the simulation
• more rapidly answer “what if?” questions – Instantaneous answer for any NEW scenario!

• do sensitivity analysis of the control factors

• optimize multiple responses and make trade-offs

• By running sequences of designs one can be as cost effective as possible 

& run no more trials than are needed to get a useful answer

• By running efficient subsets of all possible combinations, one can – for the 

same resources and constraints – solve bigger problems
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