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USING DESIGN OF
EXPERIMENTS (DOE)
FOR 35 YEARS

- ‘83-'87 Honeywell, Inc., Engineer
First saw the power of DOE in 1984

- ‘87-°99 ECHIP, Inc., Partner & Technical Director

200+ DOE courses, on-site at 40+ companies

- '99-05 Peak Process, LLC, Consultant
- ‘05-’08 US Army, Edgewood Chemical Biological Center (ECBC),

Modeling, Simulation, & Analysis Branch
DOE with Real data and Modeling & Simulation data

« '08-19 SAS Institute Inc., IMP Division

Data Visualization, Data Analytics, and their synergy with DOE
Support DoD sites, NASA, & Defense Contractors
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PROJECTS USING DOE AT U.S. ARMY ECBC CY05-08

Detection, Decontamination & Protection

- JPM Nuclear Biological Chemical Contamination Avoidance (NBCCA) - Whole Systems Live Agent Test
(WSLAT) Team support to the Joint Biological Point Detection System (JBPDS)

- Agent Fate wind tunnel experiments
Decontamination Sciences Team

- Contact Hazard Residual Hazard Efficacy Agent T&E Integrated Variable Environment (CREATIVE) -
real and simulation data

Modified vaporous hydrogen peroxide (mVHP) decontamination — real data
- Smoke and Target Defeat Team

Pepper spray characterization — real data

- Obscurant material evaluation (with OptiMetrics, Inc.) — simulation data

U.S. Army Independent Laboratory In-house Research (ILIR) on novel DOE used with simulations
Re-analysis of USAF Kunsan AFB Focused Effort BWA simulation data

- CB Sim Suite used for sensitivity analysis of atmospheric stability

U.S. Marine Corps Expeditionary Biological Detection (EBD) Advanced Technology Demonstration (ATD)

- Chamber testing of detectors — real data

- CB Sim Suite sensor deployment studies — simulation data

U.S. Navy lead on Joint Expeditionary Collective Protection (JECP)

- Swatch and chamber testing — real data

- Computational Fluid Dynamics (CFD) — simulation data
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DOWNLOADS

- PDFs available
- White Paper 2008 - Efficient Modeling & Simulation of Biological Warfare Using
Innovative Design of Experiments Methods — Tom Donnelly
https://www.imp.com/en_us/whitepapers/imp/modeling-biological-warfare.html

- Dissertation 2017 - A framework for the optimization of doctrine and systems in
Army Air Defense units using predictive models of stochastic computer
simulations — LTC Brian Wade, Technical Director at TRAC MRY
https://smartech.gatech.edu/handle/1853/58275
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RECORDINGS AT WWW.JMP.COM/FEDGOV

These 12 videos primarily cover Design of Experimenst (DOE) topics.

Custom DOE - JMP 13 (not
14)

Make the Design Fit Your
Problem

(Link to Mastering JMP)

Advanced Custom DOE -
JMP 13 (not 14)
Augmentation, Broken Design
Repair, & Design from a
Candidate Set

Mixture DOE

Efficiently Blending
Ingredients to Optimize a
Process

(Link to Mastering JMP)

Efficient M&S Using DOE
How to Run Fewer Computer
Simulations

Screening Designs

Classic FF & PB, and Modern
D-Optimal, Supersaturated,
DSD, & Alias-Optimal

Definitive Screening Designs
(DSD)
Creation & Augmentation

Analyzing DSD DOEs
Graphical Methods and Fit
Definitive Screening Platform

Exploratory Data and Root
Cause Analyses

What to Do When You Don't
Have a DOE

imp.com/t5/US-Federal-Government-JMP-Users/Efficient-M-amp-S-Usin

Compare Designs

How to Choose Better
Designs on Multiple Criteria

Data Transformations

Get Rid of L-o-F, Predictions
Make Physical Sense
(Link to Mastering JMP)

Power Calculation via MC

Simulation

Binary Responses & Split-Plot
Designs

Covering Arrays -

Rapid Fault Detection in
Software & Systems

-DOE-Methods-JMP-14/ta-p/69547 S sSas
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https://community.jmp.com/t5/US-Federal-Government-JMP-Users/Efficient-M-amp-S-Using-DOE-Methods-JMP-14/ta-p/69547
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« Each 1,000 times Philip Fahringer

] Lockheed Martin Company
* 50 Million Simulations e

ABSTRACT

L N e u ral N etWO r k The Lockheed Martin Aeronautics Company has been awarded several programs to modernize the aging C-5 military transport fleet.

In order to ensure its continuation amidst budget cuts, it was important to engage the decision makers by providing an environment to
analyze the benefits of the modernization program. This paper describes an interface that allows the user to change inputs such as

S u r ro g ate M O d e I S the scenario airfields, take-off conditions, and reliability characteristics. The underlying logistics surrogate model was generated using
data from a discrete-event simulation. Various visualizations, such as intercontinental flight paths illustrated in 3D, have been created
to aid the user in analyzing scenarios and performing comparative assessments for various output logistics metrics. The capability to

rapidly and dynamically evaluate and compare scenarios was developed enabling real-time strategy exploration and trade-offs.
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WHY USE DESIGN OF EXPERIMENTS
METHODS WITH SIMULATION EXPERIMENTS?

Quicker answers, lower costs, solve bigger problems

Obtain a fast surrogate model of the simulation

- Individual simulations can run for hours, days, weeks
- Computational Fluid Dynamics (CFD) or Simulation runs in real-time
- Numbers of factors can be very large (100+)
- Numbers of simulations needed can be large (thousands in many cases)
- Simulations can be stochastic requiring many replications
Surrogate model yields a fast approximation of the simulation

- more rapidly answer “what if?” questions — Instantaneous answer for any “NEW” scenario!
- do sensitivity analysis of the control factors
- optimize multiple responses and make trade-offs

By running sequences of designs one can be as cost effective as possible
& run no more trials than are needed to get a useful answer

By running efficient subsets of all possible combinations, one can — for the
same resources and constraints — solve bigger problems

GSas | B,



WHY IS USING DOE IMPORTANT?

- “One thing we have known for many months is that the spigot
of defense funding opened by 9/11 is closing.”

- “In the past, modernization programs have sought a 99
percent solution over a period of years, rather than a 75

percent solution over a period of weeks or months.”
- Two quotes from the January 27, 2009 submitted statement of Secretary
of Defense Robert M. Gates to the Senate Armed Services Committee.

- DOE is one of the more powerful tools we can use to efficiently

accomplish our goals.
- DOE yields the maximum information from the fewest experiments.
- DOE often yields an 80% solution in less than 20% of the work.
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LONG RUNNING PHYSICS-BASED SIMULATIONS

Detailed Physics Models can require a great deal of runtime
to generate a short period of simulation time.

Computational Fluid Dynamics (CFD) Models

Developed for Interior
Moving Man in Simulation
8M cells

10 Seconds of Simulation
64 CPUs — 4K slower

12 Hours of Runtime

Detailed Ingress/Egress,
Internal Airflow and
Convection

Developed for Exterior
Stationary Grids

1.5M Cells

30 Seconds of Simulation
Single CPU — 20K slower
7 Days of Runtime

External CW Deposition/
Evaporation, Vegetation,
Solar Heating

Developed for Exterior
Stationary Grids

TBD Cells

Min-Hours of Simulation
Single CPU
Minutes-Days of Runtime

Speed, Flexibility, More
User Friendly, V&V
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STOCHASTIC SIMULATIONS WITH MANY REPLICATES
Agent Based Simulations

File Setup Display Yiew DataOutputs Help

Map Hybrid Satellite !
=
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STOCHASTIC SIMULATIONS WITH MANY REPLICATES

Discrete Event Simulations
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CLASSIC DEFINITION OF DOE

- Purposeful control of the inputs (factors) in such a way as to
deduce their relationships (if any) with the output (responses).

suppl. Mg St
Suppl. Lactose _ _
Suppl. Sugar Coating Supplier
APl Lot Suppl. Talc Coating Viscosity

Uncontrolled Factors
e.g. . Humidity

2

API Part.

Dissolution
Coat Uniformity

Friability

Noise
Mill Time Blend Time Compressor Inlet Temp
Screen Size Blend Speed Force Exhaust Temp
Spray Rate

Atom. Pressure
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RESPONSE SURFACE DOE IN A NUTSHELL
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4 CONTROLS (INPUTS) & 2
RESPONSES (OUTPUTS) AND THEIR
EMPIRICAL RELATIONSHIPS (MODEL)
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as result of analyzing data collected for a DOE
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ASSESS UNCERTAINTY IN SURROGATE MODEL PREDICTIONS EVEN
FOR A DETERMINISTIC SIMULATION WITH NO REPLICATIONS

For non-stochastic simulations for which a surrogate model has been created,
Monte Carlo simulations can be run using assumed distributions for inputs to
better assess transmitted variation about the model point estimate.

4 = |Prediction Profiler

330
320
310
. 283.8064 300
2 [280.609, 290
287.003] 280 —=
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50000
= 40000
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E o i
10000
0 4
T8REZEIRFEISISB8ER B2 8§ 8§ § 8 8 R RS
290 150 225 70 Defect Rate Mean SD
t4 rate rpm viscosity melt 0.998 283.685 3.4853
e — —— e — T — raw tensile()  0.9522 19634.2 3083.21
All 0.998
Normal v Normal v Normal v Normal v
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TWO CLASSES OF DESIGNS FOR TWO TYPES OF
SURROGATE MODELING OF SIMULATIONS

- Traditional factorial/response surface designs for polynomial modeling

with categorical (qualitative) and continuous (quantitative) variables

- Designs can be sequentially constructed to support increasingly complex models
- Example featured here reanalyzes a simulation case matrix in which all combinations of 6 variable settings were
originally run- atotal of 648 =6 X 3 X3 X3 X2 X 2

- References on Resolution V, Fractional-Factorial Designs for many (40+) factors
- Mee, R. W. (2004), Efficient Two-Level Designs for Estimating Main Effects and Two-Factor Interactions, Journal of Quality Technology, 36, 400-412.
- Sanchez, S.M. and Sanchez, P.J. (2005), Very Large Fractional Factorial and Central Composite Designs, ACM Transactions on Modeling and Computer

Simulation, Vol. 15, No. 4, October 2005, Pages 362-377.
- Xu, H. (2009), Algorithmic Construction of Efficient Fractional Factorial Designs with Large Run Sizes, Technometrics,

http://www.stat.ucla.edu/~hgxu/pub/ffd2r3.pdf

- Space-filling designs primarily for use with continuous and categorical
variables AND non-stochastic/deterministic responses

- These designs can support “Gaussian Process” or “Kriging” spatial regression analysis — an interpolation
technique, as well as linear regression — an approximation method

GSas | B,
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HOW ARE SPACE-FILLING DESIGNS
DIFFERENT FROM TRADITIONAL DESIGNS?

Response-Surface Design
for 3-Variables with 15 Unique Trials

Space-Filling Design
for 3 Variables with 17 Unique Trials

- 0
10 B / 1
X3 - S o
8 : . = i) \
7 S i b
6 3 O |
5 ! O]
4 N L]
3 2 o
2 < B o
1 | R T <]
17 Sl O
14 .

Rather than emphasizing high leverage trials (“corners”) for a simple polynomial
model, space-filling designs “spread” their trials more uniformly through the
space to better capture the local complexities of the simulation model.
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TRADITIONAL DESIGNS FOR POLYNOMIAL MODELING

- | used to say “If a “textbook” fractional-factorial, orthogonal array or
response-surface design is available, then use it.”
Now | say, “If Definitive Screening design is available, then use it.”
- Textbooks and web site catalogs do not always contain designs for

categorical variables with:
- all combinations of mixed numbers of levels (e.g. 3, 4, 5, and 21)
- large numbers of levels for variables (e.g. 5+)

- Algebraic (Orthogonal Array) and algorithmic (D-optimal) computer generated

designs can often be used

- Orthogonal Arrays (and Nearly Orthogonal Arrays) are good at yielding analysis with un-
confounded estimates of the “main effects” when variables have many different levels

- D-optimal designs are good for adding on the fewest additional trials to support higher
order “interaction” terms in the model

GSas | B,




SEQUENTIAL DESIGNS

- Simulation experiments — Sequential designs are easily employed because

“restricted randomization” is not an issue

- Many simulations are deterministic

- Even if stochastic (random), correlation with unknown factors is not possible

- All factors are generally just as easy to change

- Can still inexpensively add a blocking variable to test if “the code has been changed!”

- Real experiments — The issue of “restricted randomization” does arise making

sequential experimentation a bit more complicated — but still possible to employ
- Groups of trials run at different (even widely spaced) periods of time

- Addressed using a blocking factor
- Sometimes there are factors that are harder to change than others, e.g. Oven Temperature

- Addressed using split-plot designs

GSas | B,



CASE MATRIX AS USED IN STUDY OF THE OBSERVED
RESPONSE “PROBABILITY OF CASUALTY” (PCAS)

Variable # Levels Levels

Agent Codes (X1) 6 A, N, T, H R, Y (categorical)

Season 3 Winter, Summer, Spring/Fall (categorical)
Time of Attack (Hour) 3 0500, 1200, 2200 Local Time (continuous)
SZASST?yZS) & Spread 2 1TBM & 1 m, 2 TBMs & 1000 m (categorical)
Mass (relative) 3 1.00, 1.57, 2.00 (continuous)

Height of Burst (X3) 2 0, 10 m (continuous)

Total Cases 648

Osas

THE
POWER
TO KNOW.




ALL 648 POSSIBLE COMBINATIONS OF SETTINGS
FORG6 VARIABLES (6 X2 X2 X 3 X 3 X 3)
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FOUR STAGE DESIGN SEQUENCE

Stage 1

36 Total
Simulations

Stage 2

108 Total
Simulations

Stage 3

324 Total
Simulations

Stage 4

ALL 648
Simulations

Main effects only
for ALL variables
+ some 2-way
interactions

324 trials in Design 4 used as checkpoints for Designs 1,2 & 3 —

Design 2, 72 trials

Design 2, 72 trials

Design 2, 72 trials

Stage 1 effects
plus all 2-way
interactions

+ some 3-way
interactions

Design 3, 216 trials

Stage 2 effects
plus all 3-way
interactions

Design 3, 216 trials

Stage 3 effects
plus ALL
remaining 4-way,
5-way and 6-way
interactions

Design 4, 324 trials
NOTE: Length of this
green box should be
longer than shown
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36 OF ALL 648 POSSIBLE COMBINATIONS OF SETTINGS
FORG6 VARIABLES (6 X2 X2 X3 X 3 X 3)
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Locations of Trials for a
4-variable, 9-trial Orthogonal Array Design
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Delete X1 and View Locations of Trials

for a 3-Variable OA9 Design

X2 X3 X4
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27
Projection of Trial Locations

for a 3-variable OA9 Design for All Pairs of Variables

e—O6—=6&

0 @ o

O O (I
»X2

All projections have 9
unique trials that can
be used to fit a 2-
variable quadratic
model with 6 terms




Can Get Designs from Different Sources
Textbook

= Limited number of catalogued solutions — experimenters
frequently change their problem to match available designs

= Variable settings are in coded units

= Web sites of designs
= Greater number of catalogued solutions — but never all
= Variable settings are in coded units

= Custom computer code

= Can find solutions for previously un-catalogued cases

= Variable settings are in coded units (-1, O, 1)

COTS Solution

= Textbook and algorithmic code for generating custom designs

= Variable settings in natural or laboratory units (120, 150, 180)
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PREDICTIONS (W/95% PRED. LIMITS) OF PCAS VS. NESTED MASS AND
MUNCNT_SPREAD FOR 1-WAY, REDUCED 2-WAY AND REDUCED 3-WAY MODELS

Predicted Probability of Casualty (PCAS) vs. Mass — with Mass Treated as a
Continuous Variable — for 5 Different Models Fit to 3 Sets of Simulation Data

1.00 1.00
1-way model w/nesting Reduced 2-way model
095 | 0.95 | |
0.90 |

— 0.8?//’
2

O 0.80

0.75 |

Model has 31 terms and fit
data from 36 simulations

Q- 0.80

) 0 0.85 |-
O 080 ] 0.80 |
0751 Model has 24 terms and fit 0.75-1 Model has 36 terms and fit
data from 36 simulations data from 108 simulations
0.70 \ \ \ \ 0.70 \ \ \ \
1.0 1.2 1.4 1.6 1.8 1.0 1.2 1.4 1.6 1.8
Mass Mass
| | | | | | | |
1.00 1.00
es | Lway model w/nesting | 0051 Reduced 2-way model |
+ some 2-way terms + some 3-way terms
0.90 | i 0.90 |
) 0.85 - g v 0857//-
< <

o0.75-| Model has 66 terms and fit
data from 108 simulations

0.70

1.0 1.2 14 1.6 1.8

Mass

0.70 \ \ \ \

1.0 1.2 1.4 1.6 18
Mass

1.00
Reduced 3-way model |

0.95

0.90 | |

0751 Model has 178 terms and fit —

data from 324 simulations
0.70 \ \ \ \

1.0 1.2 14 1.6 18 2.0
Mass

Five other variables
were held constant at
these settings:

Agent=R

Season =F

Time =12

HOR =0

#TBM &

Spread Radius = 1

Predicted Mass
-------------- 95% Prediction Limits
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“FACTOR SPARSITY” AND “EFFECT HEREDITY?”
USED TO ENHANCE MODEL COMPLEXITY

36 trials 108 trials 324 trials
150 . 150 150 CJ|
1-way w/nesting model - Reduced 2-way model - Reduced|3-way model
EIOO Emo | EIOO |
50 50 ‘ 50 I
37 I -0.93 :
0 b e g ..|J||I||||II||I||I.;._._._ (e ol Ll ||II. A 01 . C
4 2 0 2 4 -4 2 1 0 2 4 4 2 g 2 4
Percent Off Target Percént Off Target Percent Off Target
Worst Case = 3.7% Worst Case = -0.93% Worst Case = -0.0081%
Half of Cases < 0.37% Half of Cases < 0.11% Half of Cases < 0.0007%
150 | 150 — .
~ 1-way + some 2-way A 2-wayll+ some 3-way Factor Sparsity states only a few
£, termsmodel £,  termsimodel variables will be active in a
@) &) .
factorial DOE

|| - Effect Heredity states significant
- - ot o - ‘ interactions will only occur if at

50 - I
S 25
: .‘ I .I|II

0
4 1-2 0 2 4 4 2 & 2 4
Percent Off Target Percent Off Target Ieast one parent |S actlve
Worst Case = -2.5% Worst Case = -0.0251%
Half of Cases < 0.16% Half of Cases < 0.0010% See Wu & Hamada, p. 112
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ONLY A FRACTION OF ALL POSSIBLE TRIALS
MAY BE REQUIRED TO PROVIDE AN ANSWER

108 trials 324 trials

Higher Resolution (100X) Histograms of the “Percent Off Target” that
Response Predictions Fell Relative to 324 Checkpoint Observations

200 T Histogram of “% Off Target” for 324 checkpoints 200 T Histogram of “% Off Target” for 324 checkpoints

| for “reduced 2-way + some 3-way” model that | for “reduced 3-way” model that has 178 terms
| has 66 terms and fit data from 108 simulations L and fit data from 324 simulations
150 T 150 T
| Worst Case = -0.0251% | Worst Case = -0.0081%
- Half of Cases < 0.0010% - Half of Cases < 0.0007%
% 100 T % 100 T
- ]
I How far off is good enough?
50 T 50 T
[ -0.025 | ‘ [ -0.008 | |
0 £ | f | .I“I | I ul _ L ‘ | | 0 + | I |_ __II ‘ II-- ‘ |
-0.04 -0.02 0 0.02 0.04 -0.04 -0.02 1 0 0.02 0.04
Percent Off Target Percent Off ] arget
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CONCLUSIONS FOR SEQUENTIAL TRADITIONAL DESIGNS

- Possible to get the 80% to 95% solution with less than
20% of the brute force running of all factor combinations

- Use of “factor sparsity” and “effect heredity” principles
can help to get more information than the design was
originally built to support

- Next stage trials can first be used as checkpoints for
previous stages

- With improved efficiency over running all combinations,
more factors can be studied with the same resources




HOW ARE SPACE-FILLING DESIGNS
DIFFERENT FROM TRADITIONAL DESIGNS?

Response-Surface Design
for 3-Variables with 15 Unique Trials

Space-Filling Design
for 3 Variables with 17 Unique Trials

- 0
10 B / 1
X3 - S o
8 : . = i) \
7 S i b
6 3 O |
5 ! O]
4 N L]
3 2 o
2 < B o
1 | R T <]
17 Sl O
14 .

Rather than emphasizing high leverage trials (“corners”) for a simple polynomial
model, space-filling designs “spread” their trials more uniformly through the
space to better capture the local complexities of the simulation model.
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29 CFD SIMULATIONS RUN-17 USED TO
METAMODEL & 12 USED AS CHECKPOINTS

17-trial Orthogonal Latin
Hypercube (OLH) space-
filling design settings
used for creating the
metamodel

12-trial Plackett-Burman
screening design settings
used as checkpoints —
half just inside and half
just outside design
boundary (convex hull)

Trial Time of Temperature Wind _\Ninq Rela_ti\_/e Cloud
Day Speed Direction Humidity  Cover
1 505 37 5.3 247.5 30 0.92
2 165 13 5.6 281.25 0.32
3 250 19 1.7 225 0.8
4 335 25 2.9 360 0.14
5 1100 35 3.5 202.5
6 1440 15 3.2 326.25
7 930 11 6.2 236.25 80 0.44
8 845 33 5 348.75 75 0.62
9 760 21 3.8 270 50 0.5
10 1015 2.3 292.5 70 0.08
11 1355 2 258.75 90 0.68
12 1270 5.9 315 40 0.2
13 1185 4.7 45 0.86
14 420 4.1 337.5 65 0.98
15 4.4 213.75 85 0.26
16 590 31 . 303.75 20 0.56
17 675 9 2.6 191.25 25 0.38
18 972.5 26 3.05 298.125 62.5 0.65
19 547.5 16 4.55 241.875 62.5 0.65
20 972.5 26 3.05 241.875 37.5 0.65
21 547.5 26 4.55 298.125 375 0.35
22 972.5 16 4.55 298.125 62.5 0.35
23 547.5 16 3.05 241.875 375 0.35
24 547.5 26 4.55 241.875 62.5 0.65
25 972.5 16 4.55 298.125 375 0.65
26 547.5 26 3.05 298.125 62.5 0.35
27 547.5 16 3.05 298.125 37.5 0.65
28 972.5 16 3.05 241.875 62.5 0.35
29 972.5 26 4.55 241.875 37.5 0.35

- Min

- Mid

- Max

Inside
Outside
Outside
Outside

Inside

Inside
Outside

Inside

Inside
Outside
Outside

Inside
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KRIGING FIT IN 1-D SHOWING INTERPOLATION
AND CONFIDENCE INTERVALS ON PREDICTION

1.5

1
interpolation

5% confidence intervals

i N,
1 :‘/ A observations [
L




SEMINAL PAPER ON “SPACE-FILLING”
DOE FOR COMPUTER EXPERIMENTS

Q-

uaufiepyf

- Design and Analysis of Computer Experiments
Sacks, J., Welch, W.J., Mitchell, T.J. and Wynn, H.P.
Statistical Science 4. 409-423, 1989

40} Buijopoy pue ubisag
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- Textbooks on this topic include:
- Santner, T. J., Williams, B. J., and Notz, W. I. (2003), The Design and
Analysis of Computer Experiments, Springer, New York (2" in 2018)
- Fang, K. T., Li, R. Z., and Sudjianto, A. (2005), Design and Modeling
for Computer Experiments, Chapman & Hall/CRC Press, New York
- Kleijnen, J. P. C. (2008), DASE: design and analysis of simulation
experiments. Springer, New York. (2" in 2015)
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WEBSITES FOR DESIGNS, SOFTWARE & PUBLICATIONS

- http://harvest.nps.edu/ The Simulation Experiments & Efficient Design (SEED)

Center for Data Farming at Naval Postgraduate School
- Designs
- Nearly Orthogonal Latin Hypercubes (NOLH) and
- Resolution V, Fractional Factorials for many factors
- Agent-Based Simulation Software
- Pythagoras
- MANA (Map Aware Non-uniform Automata)
- Many Papers for Download and Links to INFORMS and WSC

- Library of Orthogonal Arrays maintained by Nelil J. A. Sloane
- http://neilsloane.com/oadir/

- Library of Orthogonal Arrays maintained by Warren F. Kuhfield
- https://support.sas.com/techsup/technote/ts/723b.pdf
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SURROGATE MODELING OF A COMPUTER SIMULATION
HELICOPTER SURVEILLANCE - IDENTIFYING INSURGENTS

- 2009 International Data Farming Workshop - IDFW21, Lisbon, Portugal
- Largely German team (6 of 8) — their simulation

- 6500 simulations run overnight on cluster in Frankfurt

- Space Filling Design of Experiments (DOE)

- 65 unique combinations of 6 factors (each factor at 65 levels)
- each case had 96 to 100 replications (lost a few)

- Response = Proportion of Insurgents ldentified =

PropldentINS Data bounded between 0 and 1

- EXxplore data visually first

- Fit many different models — Regression and Machine Learning
using “Train, Validate (Tune), Test” subsets

- Compare Actual vs. Predicted for Test Subsets
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SPACE-FILLING DOE (LATIN HYPERCUBE)
VISUALIZED WITH 2-D SCATTERPLOT MATRIX
AND 3-D SCATTERPLOT

Scatterplot Matrix Scatterplot 3D
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DISTRIBUTIONS OF 1 RESPONSE AND 6 FACTORS

Distributions
PropldentINS InsurgentCamouflage TigerSpeedRelative TigerHeight Tiger1_Distance ConvoySpeed num_INS2_AK4T
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Column Switcher Graph Builder
6 Columns Mean(PropldentINS) & PropldentINS vs. TigerHeight

e LU bt [ 1] 4 .t ]
0 J l l‘ |
ATiger1_Distance -
4 ConvoySpeed
Anum_INS2_AK47 0.80
D
= H
| ., 0.60-
= 0.40 - [
PROPIDENTINS VS. X
FOR 6 FACTORS
0.20
0.00- ! . . *. . °* o . c .

I ! I ! I ! I ! I ! I ! I ! I ! I ! I ! I ! I ! I ! I ! T
200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600
TigerHeight
Each error bar is constructed using the upper and lower quartiles.
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PROPIDENTINS VS. X FOR 6 FACTORS

Mean(PropldentINS) & PropidentiNS vs. num_INS2_AK47

w0l < I T .71 I I I I I I I
Mean(PropldentINS) & PropldentINS vs. InsurgentCamouflage =
100 z i} I 1 1 .{ I g 0 N
[ 3 -
i 1
080_ 020
oo _ L1 1 L
10 i 14 16 1% 20 2 24 26 8 0 2 £ 36 L] 40
num_INS2_AK4T
o 060
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5 . c
o 0 . . T = TL7
& I I [.1
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0.40 | 050
g 060 /\‘/
i
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0.20 = o
4 020 l
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( & vs. i a & vs. i Mean(PropldentiNS) & PropldentINS vs. Tiger1_Distance
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PROPIDENTINS VS. CAMOUFLAGE AT DIFFERENT HEIGHTS

Mean(PropldentINS) & PropldentlNS vs. InsurgentCamouflage

TigerHeight Binned
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HONEST ASSESSMENT APPROACH
USING TRAIN, VALIDATE (TUNE), AND TEST SUBSETS

Used in model selection and estimating its prediction error on new data

E% Make Validation Column = Validation Group
Specify how to allocate rows to Training, Validation and Test sets.
Enter either rates or counts.
Train 3874, 60%
Total Rows 6458
Training Set
Validation Set
Test Set Validate (Tuneg) 1282, 20%
New Column Name |’v’alidation Group |
Test 1282, 20%
[ OK ][ Cancel ]

The Elements of Statistical Learning — Data Mining, Inference, and Prediction
Hastie, Tibshirani, and Friedman — 2001
(Chapter 7: Model Assessment and Selection)
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R-SQUARE VS. NUMBER OF SPLITS
(FOR A RANDOM SPLIT INTO TRAIN, VALIDATE, & TEST)

SplitHistory
0.93 -

0,92 — Train

-'_'_'_._l— [ § Ep—

EI gl ] ._'_,_,-P'f e e — Test

f':f;f.-—-—___,__ e \/@lidate (Tune)

0.88 11 . - . - . -
0 5 10 15 20
Mumber of Splits

Validation Data in Red
Test Data in Crange
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DECISION TREE Each split finds the cut point among all factors that creates the
biggest difference in the means of the two partitions of the data

0

* All Rows
Count 3874 LogWorth Difference

Mean 0.7239195 6926.1871 0.88735
Std Dev 0.3990652

¥ InsurgentCamouflage>=80 ¥ InsurgentCamouflage <80
Count 867 LogWorth Difference Count 3007 LogWorth Difference
Mean  0.0351601 61.355275 0.11458 Mean  0.9225076 286.57105 0.26912
Std Dev 0.1040126 Std Dev 0.1606029
| 3 | | : |
¥ InsurgentCamouflage> =84 || ™ InsurgentCamouflage <84 ¥ InsurgentCamouflage > =72 ¥ InsurgentCamouflage <72
Count 682 Count 185 Count 294 LogWorth Difference Count 2713 LogWorth Difference
Mean 0.0107115 Mean 0.125289% Mean 0.6797028 18.723102 0.27286 Mean 0.9488197 60.669906 0.06642
Std Dev 0.0313907 Std Dev 0.1920628 Std Dev 0.2957171 Std Dev  0.1098091
> Candidates > Candidates | 4 |
¥ TigerHeight>=1206 | ¥ TigerHeight<1206 | | ¥ InsurgentCamouflage> =52 | ¥ InsurgentCamouflage<52
Count 108 Count 186 Count 7o/ Count 1946
Mean 0.5070782 Mean 0.7799365 Mean 0.901175 Mean 0.9675985
Std Dev 0.3079642 Std Dev 0.2369551 Std Dev 0.1602216 Std Dev 0.0738585

> Candidates > Candidates > Candidates > Candidates




Each split finds the cut point among all factors that creates the
biggest difference in the means of the two partitions of the data

DECISION TREE

] 0.95 ; ; ;
s 0.75 i i i 0
$ 0.72302 055 ~ All Rows
g o 0o Count 3874 LogWorth Difference
* ' 5 5 5 Mean 07239195 6926.1871 0.88735
EA A - §§§§§ REEER §§§§ IRIBYY T8 Std Dev 0.3990652
50.07 - - - 60.103 = & T
InsurgentCamou 9009 TigerSpeedRelati 20084 35.01 25.024 |
flage TigerHeight  ve Tiger1_Distance  ConvoySpeed  num_INS2_AK47 | l |
¥ InsurgentCamouflage:> =80 * InsurgentCamouflage <80
v 0.95 ; ; : Count 867 LogWorth Difference Count 3007 LogWorth Difference
S 0.75 Mean 00351601 61355275  0.11458 Mean 09225076 28657105 026912
1;13'-9115?'5 o2 1R Std Dev 0.1040126 Std Dev 0.1606029
£ 0.15 [o) )
| e | | = |
TRALS 83338 Y208 §383 ISSIR TN
50.07 == - 60.102 = & F i * InsurgentCamouflage> =84 | ™ InsurgentCamouflage <84 ¥ InsurgentCamouflage> =72 * InsurgentCamouflage<72
InsurgentCamou . S'flfl.%' TigerSpeedRelati . lS'S'EI..-'l 35.01 25.024 Count 682 Count 185 Count 294 LogWorth Difference Count 2713 LogWorth Difference
flage TigerHeight  ve Tiger Distance  ConvoySpeed  num_INS2AK4 | proan  0.0107115 Mean  0.125289 Mean 06797028 18723102  0.27286 Mean 09488197 60.669906  0.06642
Std Dev  0.0313907 Std Dev  0.1920628 Std Dev  0.2957171 Std Dev  0.1098091
E et : : : [ Candidates I Candidates = Al
$§ 0.o4ez2 055 f | ~J | | “ \
g 3132 2 R ~ TigerHeight>=1206 || ™ TigerHeight<1206 | || ~ InsurgentCamouflage>=52 | ¥ InsurgentCamouflage <52
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= ﬂ "'m‘_ Y § § § § § E ?3 G § § § § ARRYY TEARNS Mean 0.5070782 Mean 0.7799365 Mean 0.901175 Mean 0.9675985
STee 6013 0 o+ NS Std Dev 0.3079642 Std Dev 0.2369551 Std Dev 0.1602216 Std Dev 0.0738585
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Split History
) ) 0.825
Can be interpreted as a series g o0 ——— Column Contributions
Z 0.875 Number
“wen u
of nested “If” statements  osm e
InsurgentCamouflage 4 553432008 | 0.9000
0.825 TigerHeight 1 5.08702203 | 0.0091
. 0 1 2 3 4 5 ] TigerSpeedRelative 0 0 0.0000
‘f Number of Splits Tigerl_Distance 0 0 0.0000
.I mp Validation Data in Red Camigyfssi & g (0000
Tet Data in Orange num_INS2_AKAT 0 0 0.0000




HONEST SUBSET DATA TO CREATE TRAIN, VALIDATE(TUNE), & TEST GROUPS
ASSESSMENT USE VALIDATE(TUNE) GROUP TO PRE\|/ENT OVERFITTING DATA MINING MODELS

WHEN DATA MINING o

[InsurgentCamoutlage |

Validation Group 1
I - |
»>=320 <80
. [nsurgentCameuflage | [InsurgentCamoufiage |
Train 3574, 60% "L
[ O | | = |
==84 <84 ==T72 <72
|ConvoySpeed | [ConvoySpeed | igerHeight [InsurgentCamoufiage |
Validate (Tune) 1292, 20%
I J | | 4 |
I <44 E E >=1206 <1206 »=32 <52
[nsurgentCameuflage | lFsurgEnt[;amlzaui‘lage | [TigerSpeedRelative | E;nvo}fSpeed | [TigerHeight |
Test 1292, 20% | | | | | |
ﬁﬁ g 2253 »=45 <45 »=157% <1578
A [nsurgentCameuflage | igerHeight num_IMN52_AK47 igerHeight [nsurgentCameuflage |
|
Number | |
" == - -]
RSquare RMSE N of Splits AlCc 5 <23 2=23 >=14 <14
o - A [num_INS2_aK47]  |[Tiger]_Distance] [num_INS2_aK47] [TigerHeight|
Training 0.914 01170276 3874 25 -5573.8
Validation 0,915 01132339 1282 L
— - ==3004 — »=18
Test 0.915 01147605 1292 Figer! Distance] Frgerrieiani]
Split History Split History
1.00 >=309
0.920 hum_IM52_AK4T
o @ ——— 4T <25 Gt
U:D:_ 0.90 f.-‘-d?’-_'"" . U:D:_ 0.910 L/ ,_::—;;" I ConvoySpeed || #
“ el f First 5 splits raise|Val % oos 1 20 more splits to|raise Val
R”2 from 0 to 0.908 I R"2 from 0.908 to 0.915 Column Contributions
0.80 0.200 Al s
' ' Term of Splits SS Portion
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 InsurgentCamouflage 9 555.084982 | 09847
: : TigerHeight 6 646006421 i i i 0.0115
Number of Splits Number of Splits Cfnwsgpeed 2 145803001 0,000
Validation Data in Red Validation Data in Red T Dince i I T I N R
Test Data in Orange Test Data in Orange TigerSpesdRelative 0 0 P 0.0000




COMPARE SEVERAL MODELS
Logistic Regression, Partition with 5-Splits, Neural Network, & LASSO Binomial

4 = Prediction Profiler

Prediction for
Logistic ~ 0.313417
Regression

Prediction for
5-split 0.507078
Partition

Prediction for
Boosted 0.350056

NTanH(1)97
o]
@
M
‘= Other
Prediction for LASSO 2
QJ ______
oh
T T T T T "1 T 1 T T T 1 I T 1 I I 1 I I I
o o 0 00 QO O O O OO0 O [ B = - | o o o O L= o oo o o o
NT OO0 O O O ON T D O S © &8 m F ;e & Mmoo
=0 EEE = 8 % 8
76 60
InsurgentCamou 1220 TigerSpeedRelati 3000 35 25
ﬂagem TigerHeight ve Tiger1 Distance ConvoySpeed  num INS2 AK47
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ACTUAL VS. PREDICTED PLOTS FOR TEST DATA ONLY

Column Switcher Local Data Filter Mean(PropldentIiNS) & PropldentINS vs. Prediction for 5-split Partition
4 Columns A Show [4 Include Validation Group ® Nlean
4l Prediction for Logistic Regression 1292 matching rows Test — PropldentIMS
Prediction for 5-split Partition [] Inverse 1.254 ¥ = 0006787 + 1.008"X — Smooth
4 Prediction for Boosted NTanH(1)97 o s%oo0n
4l Prediction for LASSO complex Logistic Validation Group (3)
LAl L Validate (Tune) 12492
== Train 3874 1.00-
[ m——
0.75 T
z
& 050
8
a
Four Models 025
1. Logistic Regression
2. Partition with 5-Splits 1
0.00 -
3. Neural Network
4. LASSO Binomial
-0.25
T T T ' T T T T T T T
0.0 0.2 04 0.6 08 1.0

Prediction for 5-split Partition
Where(Validation Group = Test)

Each error bar is constructed using the upper and lower quartiles.
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Mean(PropldentiNS) & PropldentlNS vs. Prediction for Logistic Regression

PropldentINS

PropldentINS

Validation Group
Test

¥=-0.04474 + 1.067*X
1.25- R%0.876

® Mean ——PropldentiNS ——Smooth

0.75

0.50

0.25

0.00 e

Mean(PropldentINS) & PropldentINS vs. Prediction for Boosted

NTanH(1)97
Validation Group
Test
1.25- ¥ =-0.02176+1.021*X ® Mean ——PropldentlNS ——Smooth
R%:0.912
1.00
0.75
0.50 /
0.25
0.00 -
-0.25
00 02 04 0.6 08 1.0

Prediction for Boosted NTanH({1)97

PropldentINS

PropldentINS

Mean(PropldentiNS) & PropldentlNS vs. Prediction for 5-split Partition
Validation Group

Test
1.25
¥ =-0.006787 + 1.008*X

R%0.909

® Mean ——PropldentiNS ——Smooth

0.50

0.25

0.00

Mean(PropldentINS) & PropldentINS vs. Prediction for LASSO complex

Logistic
Validation Group
Test
1.257 v = .0,008466 + 1.012*K ® Mean —PropldentlNS —Smooth
R%0.016
1.00 ]
0.75
0.50
y
0.25
0.00 g
-0.25
00 02 04 06 02 1.0

Prediction for LASSC complex Logistic

ACTUAL VS. PREDICTED PLOTS
FOR TEST DATA ONLY

LOGISTIC REGRESSION
PARTITION WITH 5-SPLITS
NEURAL NETWORK
LASSO BINOMIAL
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WHY IS A SEQUENTIAL APPROACH SO USEFUL?

We wanted to not just do sensitivity analysis of the factors, but provide an
Interactive surrogate model of the long-running simulation so that
analysts could evaluate “what if?” scenarios.

The problem was that the Computational Fluid Dynamics models we were
looking to run could take a week on a single CPU or 12 hours on 50 CPU
cluster. With on the order of 10 factors we expected to need to run on the
order of 100 simulations. This meant it could be weeks or months
before we could start our analysis.

Nested Latin Hypercube Designs gave us a way to start analyzing data
after about the first 20% of the simulations were run. We also wanted to
be able to run just enough simulations to achieve a surrogate model
accuracy of 90%.
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PROJECTIONS OF TRIAL LOCATIONS IN 2 FACTORS
FOR A 10-FACTOR, 128-TRIAL, NESTED LATIN
HYPERCUBE DESIGN* (NLHD) WITH 4 BLOCKS

Block 4, 64 trials

Block 1, 16 trials
300 °

2507

rom

2007 ,

150"

Running totals of
blocks are also Latin
Hypercube Designs

Block 2, 16 trials

3007

2507

rpm

3007

Block 3, 32 trials

o0 -~ - 300 . ¥ *
| A * *
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a a
a N * * * *
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WHY RUN SIMULATIONS IN SEQUENTIAL BLOCKS?

The point of running this sequence of blocks is to be able to evaluate the surrogate

model after each stage to see how accurately it is predicting observed values of 3
sets of checkpoint trials. If it proves to be sufficiently accurate, then subsequent

blocks of simulation trials need not be run.

Without the NLHD approach one has to choose the “right” size space-filling design in
order to get useful results. If you choose too small a design, one has to start over

with a larger design.

Scatterplot 3D Scatterplot 3D
pm
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COMPARE RESPONSE SURFACES FOR FIT OF 16 VS. FIT OF 128
TRIALS (LEFT) AND FOR FIT OF 64 VS. FIT OF 128 TRIALS (RIGHT)
Stage 1 fit of16 trials colored green
Stage 4 fit 128 trials colored brown
Stage 3 fit 64 trials colored purple
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Chk.Pts. C - full range -

Chk.Pts. B -1/2 range -

Chk.Pts. A - 5/16 range -

4th Block -

3rd Block -

2nd Block -

1st Block -

Trial Group vs. % Off Target as Sequential NLHD Blocks are Fit
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ACCURACY OF SURROGATE PREDICTIONS FOR 3 GROUPS OF CHECK-
POINTS YIELDING MARGINAL, MODERATE AND EXTREME EXTRAPOLATION
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PLOTS OF ACTUAL VS. PREDICTED (SIMULATION VS. SURROGATE)
BY CHECKPOINT GROUP FOR 4 STAGES OF ANALYSIS OF NLHD

Tensile vs. Tensile Pred - 16 GN & 3 mor
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CONCLUSIONS SEQUENTIAL SPACE-FILLING DESIGNS

‘NLHD designs can be run sequentially so that surrogate model
accuracy can be evaluated after each block and decision made
as to whether or not to move forward with the next block

-Generally as more NLHD blocks are run, the surrogate model
accuracy Iincreases

-Inclusion of extreme (full range) extrapolation checkpoints will
expand interpolation volume of Kriging analysis — assuming
Kriging analysis remains stable

-Caveat: These conclusions were reached using a moderately
complex transcendental function in lieu of a CFD simulation
model that is believed to do a good job of stressing
extrapolation with the surrogate model..




WHY USE DESIGN OF EXPERIMENTS
METHODS WITH SIMULATION EXPERIMENTS?

Quicker answers, lower costs, solve bigger problems

Obtain a fast surrogate model of the simulation

- Individual simulations can run for hours, days, weeks
- Computational Fluid Dynamics (CFD) or Simulation runs in real-time
- Numbers of factors can be very large (100+)
- Numbers of simulations needed can be large (thousands in many cases)
- Simulations can be stochastic requiring many replications
Surrogate model yields a fast approximation of the simulation

- more rapidly answer “what if?” questions — Instantaneous answer for any NEW scenario!
- do sensitivity analysis of the control factors
- optimize multiple responses and make trade-offs

By running sequences of designs one can be as cost effective as possible
& run no more trials than are needed to get a useful answer

By running efficient subsets of all possible combinations, one can — for the
same resources and constraints — solve bigger problems
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