The Future of Systems Engineering Continued STEVEN H. DAM, PH.D., ESEP OCTOBER 23, 2019 ### Agenda - Why Isn't SysML Enough? - How Will Technology Improvements Enable Better SE? - How Can We Use these New Technologies to Deal with Technology and Security Issues? - How Can We Support the New Digital Engineering Environment Better? - How Can We Use these New Capabilities to Enhance Systems Engineering Education and Training? ## Why Isn't SysML Enough? - Systems Modeling Language was developed to extend the software focused Unified Modeling Language (UML) to systems - Interest in UML peaked in 2004 - Software developers have moved on to Agile, which requires functional requirements - Both SysML and UML require experts to create and interpret - Systems Engineering requires communications with all stakeholders From Google Trends retrieved 11/17/2017 ## Why Isn't SysML Enough? - But it's worse than just not being easy to understand - SysML is lacking many of the programmatic pieces of information: risk, issues, decisions, schedule, cost, ... as explicit diagrams or entities - The lack of an ontology has been noted and is in the process of being developed - But what if there was already a language that provided an ontology for SysML and filled in the missing pieces? ## LML Provides the Missing Ontology - The Lifecycle Modeling Language (LML) provides a starting point for your language - It's an open standard, free for use - It's designed to be the "80%" solution - It's a simple language that can be extended it to meet your particular needs - LML 1.1 was extended in 2014 to provide an ontology for SysML (www.lifecyclemodeling.org) - LML is a hybrid functional and object language - The Innoslate tool demonstrates that this ontology can generate SysML diagrams from the data, as well as other diagram types (IDEFO, N2, Class Diagrams, I2, Layer Diagram, ...) as a proof of principle ## Comparing SysML and LML - An analysis was performed by the author to compare using an ad hoc technique, implemented with MS Office tools (MS Word, MS Excel, MS PowerPoint/Visio, MS Access, MS Project) as the baseline - The SysML-based technique included using DOORS, MagicDraw, Python/Cameo Simulation Toolkit, Risk Register, MS Project, and MS SharePoint - The LML-based technique used only Innoslate - A set of standard systems engineering tasks associated with systems engineer was developed, based on categories identified by Mr. Joe Elm ## Systems Engineering Task Decomposition - We estimated the time it took for each task - These estimates were then assigned an "Ease of Use" score of 0 to 5, with 5 being the least time to execute the task - The 0 was only used if the toolset could not facilitate the task ## Comparison Chart - Detailed descriptions we developed for each task - These descriptions and scores were reviewed and adjusted by personnel with extensive experience in DOORS, MagicDraw, and other SE tools | | Number | Name | Description | specified by Name | specified by Number | specified by Description | specified by Value | specified by Units | specified by Ease of Use
Score | |---|--------|----------------------|---|-----------------------------|---------------------|---|--------------------|--------------------|-----------------------------------| | | | SE Tasks | | | | | | | | | | 1.1 | Requirements | | | | | | | | | | 1.1.1 | Import Documents | Import documents from PDF and CSV formats. | LML Import Documents | EoU.3.1.1 | Innoslate has both a Word and CSV import capabilities. Some manipulation may be required to put it into a proper form. Time assumes little work on document needed. | 0.5 | Hours | 4 | | D | | | | SysML Import Documents | EoU.2.1.1 | Since DOORS is the preferred
requirements tool, some work
may have to be performed on
the document to bring it
in. Time assumes little work on
document needed. Will have to
set up hierarchy manually if
numbering scheme is in
original. | 1 | Hours | 3 | | | | | | Ad Hoc Import Documents | EoU.1.1.1 | Converting a document from
PDF or CSV to begin
manipulating in the database.
For the MS Office tools this is
something fairly trivial. You can
save the PDF as a Word file. If
it's a CSV, you can immediately
import it into Excel or Access. | | Hours | 5 | | 9 | 1.1.2 | Analyze Requirements | | LML Analyze Requirements | EoU.3.1.2 | NLP Quality Checker in
Innoslate analyzes each
requirement against 6 of 8
quality factors. Time is per
requirement. | 0.1 | Hours | 5 | | | | | | SysML Analyze Requirements | EoU.2.1.2 | Manual analysis | 0.5 | Hours | 1 | | | | | | Ad Hoc Analyze Requirements | | Manual analysis | 0.5 | Hours | 1 | | | | Manage Requirements | Create a workflow for managing the requirements from draft to archived. | LML Manage Requirements | EoU.3.1.3 | Using Innoslate's Workflow tool | 0.1 | Hours | 5 | | 9 | 1.1.3 | | | SysML Manage Requirements | EoU.2.1.3 | Older versions of DOORS do
not have a workflow capability
and it must be done
manually. DOORS Next
Generation does have
a workflow capability. Time is
per requirement. | 0.5 | Hours | 1 | | | | | | Ad Hoc Manage Requirements | EoU.1.1.3 | Manual tracking. Time is per
requirement. | 0.5 | Hours | 1 | | | | | | | | Innoslate's Traceability Matrix
has NLP Assist. User just has | | | | #### The Results - The SysML-based approach was slightly better than the ad hoc approach - This result may explain why many people feel that the SysML toolset is not much better than using MS Office - The LML-based approach scored significantly better than either of the other approaches - The primary reasons for this was the modern software design, automatic view generation, web-based implementation, and the extensive set of rule checkers and importers, many using Natural Language Parsing (NLP) and pre-trained Machine Learning (ML) algorithms ### How Will Technology Improvements Enable Better SE? - Some emerging/available technologies of the future: - Cloud computing (already here!) - Artificial Intelligence (Natural Language Process is already here!) - Graph Databases (already here!) - Optical Computing (coming soon) - How can they help us? - Cloud computing provides a means to collaborate worldwide today ... SE tools need to take advantage of this capability - Artificial Intelligence can help us find design problems or potential problems early - Graph Databases enable greater storage capacity - Optical Computing will enable create speed of computations, thus allowing for higher fidelity modeling and simulation # How Can We Use these New Technologies to Deal with Technology and Security Issues? - One technology of great interest is artificial intelligence - How can we model and predict AI behavior? - The same way we model and predict human behavior behavior models - Behavior modeling is a term used by popular tools, such as Ascent Logic's RDD-100, Vitech CORE, and Innoslate - This modeling was originally developed by TRW in the late 1960s - Behavior modeling can also support other concerns, such as cybersecurity - LML took the behavior model one step beyond previous versions through the Action Diagram ## Modeling AI and Decisions - The LML Action Diagram uses decision points as a special case of the Action class entity - Innoslate added Resources explicitly to the Action Diagram You can also model defense-in-depth and command & control more accurately ## How Can We Support the New Digital Engineering Environment Better? - Vertically integrate with design engineering tools using APIs - Use SE Database as a repository for all the design engineering information - Create living documents for model-based reviews ## Living Document Example: SRD - This SRD uses the DAU SRD Template as a basis - The Asset Diagram provides a generator tool - All directly related information to the entities in the diagram are used to fill-in the template - Subsequent generations will baseline the previous version first and then create a new version of the document # How Can We Use these New Capabilities to Enhance Systems Engineering Education and Training? - We currently support over 200 Colleges and Universities Around the World - LML provides a much easier to understand and use as a means of teaching key systems engineering and MBSE concepts to students - Innoslate is free for Academic use and includes support for anyone using the tool - Innoslate also provides a platform to extend SE research ## Summary - LML provides a path to the future of systems engineering - If digital engineering is the future, then we need to have a modern cloud-based tool that applies NLP/ML and other technologies - We recommend including LML in any and all SE tools - We cannot design future systems using old methods and tools - We need to embrace these new technologies, not hamper them